The Origins and the Evolution of Language

Salikoko S. Mufwene

University of Chicago

Collegium de Lyon (2010-2011)

1. Introduction

Although language evolution is perhaps more commonly used in linguistics than evolution of language, I stick in this essay to the latter term, which focuses more specifically on the phylogenetic emergence of language. The former, which has prompted some linguists such as Croft (2008) to speak of evolutionary linguistics,1 applies also to changes undergone by individual languages over the past 6,000 years of documentary history, including structural changes, language speciation, and language birth and death. There are certainly advantages, especially for uniformitarians, in using the broader term. For instance, one can argue that some of the same evolutionary mechanisms are involved in both the phylogenetic and the historical periods of evolution. These would include the assumption that natural selection driven by particular ecological pressures applies in both periods, and social norms emerge by the same

1 Interestingly, Hombert & Lenclud (in press) use the related French term linguistes évolutionnistes ‘evolutionary linguists’ with just the other rather specialized meaning, focusing on phylogenesis. French too makes a distinction between the more specific évolution du langage ‘evolution of language’ and the less specific évolution linguistique ‘linguistic/language evolution’. So, Croft’s term is just as non-specific as language evolution and évolution linguistique (used even by Saussure 1916). Croft, Hombert & Lenclud, and others were apparently inspired by the term evolutionary biology as the discipline that focuses on biological evolution, defined, for instance, in Wikipedia (March 2011) as “a sub-field of biology concerned with the origin of species from a common descent and descent of species, as well as their change, multiplication and diversity over time.”
principle of the “invisible hand” or “self-organization” (e.g., Hurford 2006, Mufwene 2008).

However I focus here only phylogenetic evolution.

In this chapter I provide a selective history, since Antiquity, of this complex but still largely speculative topic which, over the past two decades alone, has prompted numerous publications and has aroused a lot of controversy among linguists and informative exchanges between them, primatologists, psycholinguists, anthropologists, neurolinguists, evolutionary biologists, paleontologists, and computational linguists. This intellectual engagement has been in sharp contrast with most of the 20th century, during which linguists appear to have abided by the ban that the Société de Linguistique de Paris imposed in 1866 on discussing the subject matter at its meetings. (See also Allan 2010: 231 for similar remarks.) It appears also to have resurrected several positions by and controversies among especially 18th and 19th-century European philosophers and philologists, some of whom, such as Frederick Müller and Dwight Whitney, are rightfully considered forerunners of modern linguistics. I show below that the differences between the two periods lie especially in the stronger empirical foundations of recent hypotheses and on the realization by today scholars of the need to factor in findings in other research disciplines or areas. Few research questions and positions are really new.

Time and space constraints make it impossible for this essay to be exhaustive, especially regarding names of precursors and present scholars. Nonetheless, every effort has been made to be synthetic in highlighting recurrent themes and issues since antiquity. My discussion is organized around the following questions, though the chapter is not structured in the order in which they are listed here nor into corresponding sections:
1) Was language given to humans by God or did it emerge by Darwinian evolution, which assumes exaptation, variation, competition, and natural selection, depending on how ecology rolls the dice?

2) From a phylogenetic perspective, did language emerge abruptly or gradually? If it emerged gradually, can intermediate stages between the initial, embryonic form of language and the current complex structures of modern languages be posited? What would count as evidence for positing the intermediate stages? Assuming that the structure of modern languages is modular, would gradual evolution apply to any of the modules, only to some of them, or only the overall architecture? For instance, could the phonetic module have evolved as gradually as the syntactic and semantic modules? What is the probable time of the emergence of the first real ancestor of modern language, i.e., what may, according to Bickerton (1990ff) be identified as “protolanguage”?

3) Does possessing language, conceived of as a nonindividuated entity and as a property of all humans, presuppose monogenesis or does it allow for polygenesis? How consistent is either position with paleontological evidence about the evolution of the Homo genus? How and when did linguistic diversity start? Assuming Darwinian/variational rather than transformational evolution, can monogenesis account for typological variation as plausibly as polygenesis?

4) What is the chronological relationship between communication and language? What light does this distinction shed on the relation between sign(ed) and spoken language? Did some of our hominin ancestors communicate by means of ape-like vocalizations and gestures? If so, how can we account for the transition from them to phonetic and signed languages? And how can we account for the fact that modern humans have favored speaking over signing?
Assuming that language is a communication technology (emergent or invented), to what extent are some of the structural properties of languages consequences of the linearity imposed by the phonic and signing devices used in their architecture? What is determined culturally and what is determined biologically in the architecture of languages?

5) Is the evolution of language really like biological evolution? Or is it more like cultural evolution? In the first place, how does cultural evolution differ from biological evolution?\(^2\) Are languages as cultural artifacts deliberate inventions or emergent phenomena? Who are the agents in the emergence of language: individuals or populations, or both? What are the particular dynamics that produce languages?

6) What is the relationship between language and thought? Are these cases of co-evolution or did one cause the other, and which one?

7) Is there such a thing as “language organ” or “biological endowment for language”? How can it be characterized relative to modern humans’ anatomical and/or mental makeups? What are the ecological factors in the human anatomical and mental structures, as well as in their social life, that facilitated the emergence or invention of language?

8) Can we learn something about the evolution of language from the scholarship on historical language change, especially from the emergence of creoles and pidgins? Can we learn something from child language and/or from home sign language? And what can be learned from “linguistic apes”? Does it make sense to characterize these particular communicative

\(^2\) Frachia & Lewontin (1999) doubt that one can speak of cultural evolution, like of biological evolution, chiefly because the units of culture are learned but not inherited. The same objection might be extended to language, which is fundamentally a cultural artifact.
“systems” as fossils of the human protolanguage? In this context, one can also ask the question of what computer modeling can contribute to understanding the evolution of language. This is definitely the kind of thing that scholars could not do before the 20th century; it is important to assess its heuristic significance.

As noted by Kirby (2007), the subject matter of the origins and evolution of language is obviously a very complex one. It lies at the intersection of several academic disciplines and requires an inter-disciplinary approach. I have listed all the above questions, which are still but a subset of the larger range of questions one can address in a book, so that the reader may empathize with the daunting task I have accepted in writing this synopsis and appreciate the synthetic approach I adopt in focusing on noteworthy positions and issues, aiming at the big picture. Unfortunately, this strategy will entail omitting many equally relevant names and references, aside from not being able to be topically or thematically exhaustive. The positions of the scholars I discuss may not even be presented in their entirety, due largely to space limitations. More interested readers are encouraged to read recent publications such as Fitch (2010) and Hombert & Lenclud (in press) for complementary and/or alternative accounts. I must also apologize for focusing exclusively on Western scholarship, which reflects my embarrassing ignorance of the other traditions. I will seek no excuse for the fact that European colonial expansion, which has shaped me intellectually, has generally downplayed what we could be learning from the other scholarly traditions. I hope the reader will still be able to tell that I have been fighting against this bias in much of my scholarly work.

\footnote{I will generally refrain from using the term \textit{system} in reference to animal means of communication, largely because it is contradictory to designate them by this term while we also claim that they have no grammar. To be sure, we do not know; but perhaps we should wait until we know that the term applies.}
2. A historical synopsis

Speculations about the origins of language and linguistic diversity date from far back in the history of mankind. Among the most cited cases is the book of Genesis, in the Judeo-Christian Bible. After God created Adam, He reportedly gave him authority to name every being that was in the Garden of Eden. Putatively, God and Adam spoke some language, the original language, which some scholars have claimed to be Hebrew, the original language of Bible. Adam named every entity God wanted him to know; and his wife and descendants accordingly learned the names he had invented.

Although the story suggests the origin of naming conventions, it says nothing about whether Adam also named actions and states, or whether he just named entities. In any case, it suggests that it was necessary for Adam’s wife and descendants to learn the same vocabulary to facilitate successful reference to the same entities. Presumably God must have learned that vocabulary too, in order to communicate successfully with Adam, Eve, and their descendants.

Up to the 18th century, reflecting the impact of Christianity, pre-modern Western philosophers and philologists typically maintained that language was given to mankind, or that humans were endowed with language upon their creation. Assuming that Eve, who was reportedly created from Adam’s rib, was equally endowed with (a capacity for) language, the rest was a simple history of learning the original vocabulary or language. Changes needed historical accounts, grounded in natural disasters, in population dispersals, and in learning with modification, to which I return below.

4 Farrar (1865) observes that God’s speaking to Adam does not entail that He used a human language! That communication may have been by some other means. This is plausible.
The *Genesis* also deals with the origin of linguistic diversity, in the myth of the Tower of Babel (11: 5-8), in which the multitude of languages which are not mutually intelligible is treated as a form of punishment from God. According to the myth, the human population had already increased substantially, generations after the Great Deluge of Noah’s Ark story. To avoid being scattered around the world, they built a city with a tower tall enough to reach the heavens, the dwelling of God. This was apparently a violation of the population structure set up at the creation of Adam and Eve. God brought them down (according to some versions, He also destroyed the tower), dispersed them around the world, and confounded them by making them speak in mutually unintelligible ways. Putatively, this is how linguistic diversity began.5 The story suggests that sharing the same language fosters collaboration, contrary to some of the modern Darwinian thinking that joint attention and cooperation, rather than competition, facilitated the emergence of language (see, e.g., Tomasello 2008).

Another story often reported in linguistics is the following:

According to Herodotus (*Histories* 2.2) Pharaoh Psammetichus I [also known as Psamtik, of the 26th dynasty, 7th century BC] wanted to determine the oldest nation and establish the world's original language. For this purpose, he ordered two children to be reared by a shepherd, forbidding him to let them hear a single word, and charging him to report the children’s first utterance. After two years, the shepherd reported that on entering their chamber, the children came up to him, extending their hands, calling *bekos*. Upon

5 Hombert & Lenclud (in press) identify another, less well-recalled account also from the book of *Genesis*. God reportedly told Noah and his children to be fecund and populate the world. Subsequently, the descendants of Sem, Cham, and Japhet spread all over the world and built nations where they spoke different languages. Here one also finds an early, if not the earliest, version of the assumption that every nation must be identified through the language spoken by its population.
enquiry, the pharaoh discovered that this was the Phrygian word for “wheat bread”, after which the Egyptians conceded that the Phrygian nation was older than theirs (Wikipedia, January 2011).

The story may be interpreted to suggest monogenesis, according to which a single language was the ultimate ancestor of all modern languages. This would correspond to a proto-language, such as Proto-Bantu or Proto-Indo-European, in genetic linguistics. However, this is not the theme we find in Plato’s Cratylus, which focuses on how the first words emerged, more specifically in Greek. According to the dialogue with two disciples, Cratylus and Hermogenes, Socrates (the teacher and Plato’s mouthpiece), names originally captured the essence of the entities they denote; transmission from generation to generation has affected their transparency, making them (rather) opaque, reducing them to conventional, arbitrary signs. Opaqueness is accordingly more obvious in words borrowed from other languages, then considered “barbarous,” especially since their roots are harder to trace. Socrates’ comparison of the putative initial baptismal practice with the work of a painter makes his account a precursor of modern synesthetic approach, as he associates particular sounds with specific meanings. He thus anticipated some 18th- and 19th-century philologists who saw the origins of language in “natural sounds” produced by animals and other entities in nature.

Anticipating Johann Gottfried Herder, Socrates rejects the hypothesis that names had divine origins, because, according to him, they are so imperfect that they could not have been made by the gods. The Cratylus is also one of the earliest works that associate language change
with imperfect learning and language contact.6 The latter phenomenon complicates the evolutionary trajectories of particular languages, which, in contemporary metalanguage, need not be considered as unilinear.

Recently, the significance of population movements and language contacts in the evolution and diversification of languages is underscored especially by Cavalli-Sforza (2000). Assuming that the exodus of \textit{Homo sapiens sapiens} out of East Africa was protracted, he argues that some of the later migrant populations came in contact with earlier ones. Though he says nothing about monogenesis vs polygenesis, the idea appears to be that the original language changed as human populations migrated away from the homeland. Later contacts between the dispersing populations produced even more changes. No more reason other than population dispersal is given for the change, which is also problematic in typical accounts of speciation in language families such as Bantu and Indo-European.

The dominant trend in genetic linguistics, which inspired Cavalli-Sforza (2000), has indeed been for monogenesis, positing a proto-language or uniform common ancestral population from which all the members of a language family can be derived.7 The monogenesis account of the evolution of language has also been adopted by Ruhlen (1994) in particular, who has attempted to reconstruct the ultimate phylogenetic proto-language since \textit{Homo sapiens}, on

6 Surprisingly, in linguistics, language contact has generally not been assumed to play a significant role in “normal language change” (Mufwene 2001, 2005, 2008). Its importance has been acknowledged only in the case of so-called “contact languages,” typified by creoles and pidgins, leading DeGraff (2003, 2005) to decry “creole exceptionalism.”

7 Although he did not reject the position completely, Trubetzkoy (1939) questioned the usefulness of deriving genetically-related languages from one single proto-language rather from a group of related language varieties, which did not do everything in exactly the same way. This variational evolution is what genetic linguists informed by evolutionary biology may be expected to practice in the future (Mufwene 2008: 124-127). Thus, Grimm’s law, for instance, can be explained by natural selection, applying over competing variants, rather than by transformation, as traditionally assumed in linguistics.
the model of proto-Indo-European or proto-Bantu. It will become obvious below that Bickerton’s “protolanguage” (without a hyphen) means something rather different.

Writing in the 1st century BC, the Roman poet and philosopher Titus Lucretius Carus questioned one particular brand of monogenesis that is not necessarily Adamic:

(...) to think that one individual then distributed names to things and that humans learned the first words from him is absurd. For why would he be able to mark everything with utterances and emit different sounds of the tongue, and at the same time others not being capable of having done it? Besides, if others too had not used their voices with one another, from where was the notion of utility implanted, and from where was this power first granted to him, to know what he wanted to do and conceive of it in his mind? Similarly, one person could not have prevailed and forced so many to want to learn the names of things so thoroughly (...) (lines 1041-1051).

Lucretius thereby suggests that language emerged and evolved from the collective communicative acts of individuals interacting with each other. We may, in modern terms, think of different interactants innovating on different occasions and the successful innovations being copied by others. This is the position articulated by Michel Bréal in the late 19th century (see below), in contrast with the vast majority of scholars who have simply ignored the question.

There doesn’t seem to have been much speculation on the origins of language since Lucretius until the 18th century, “the (Age of) Enlightenment.” The contribution of the Renaissance period appears to be negligible, as the focus was on (the logic of) the structure of language, epitomized by Port-Royal Grammar, published in 1660 by Antoine Arnauld and Claude Lancelot. It’s not evident what the reason for this return to the subject matter of the
origins of language was, except perhaps that the post-Renaissance social philosophers, so interested in defending the natural rights of people and freeing fellow citizens from superstition and the creationist dogma of Christianity, may have wanted to also have a better understanding of the origins of mankind. Convinced that rationality distinguishes mankind from other animals, they were interested in the apparent hen-and-egg connection between humans’ mental capacity and language.

A name that was particularly influential in the 18th century was Etienne Bonnot de Condillac, who according to Arsleff (1982), then launched debates on the origins of language with his *Essai sur l’origine des connaissances humaines* (1746). He argued that language is a consequence of humans’ being rational and needing this tool to express their thoughts. Although he saw language as constrained by its phonetic architecture to linearize thought that need not have been conceived linearly, he also claimed that language gives more structure to thought processes and is the foundation of (the growth of) human knowledge.8

Contrary to the received doctrine of the Catholic Church, the dominant one at his time, Condillac concluded that language was man-made, the product of humans’ capacity for creative thought, and not God-given. This position, which was also espoused by Johann Gottfried Herder and other 18th-century philosophers, was a courageous one, especially for the abbot he was. Condillac is also reported to have contributed to, if not started, the hypothesis that language emerged from natural cries. Although it would be derived by Fredericjk Max Müller in the 19th-century (see below), this position addresses the question of how humans evolved from the

8 Today’s students of the evolution of language will no doubt recognize this in Bickerton’s (1990ff) position that language enhanced humans’ mental capacity. On the other hand, assuming that language is communicative technology (Smith & Szathmáry 1999, Lee et al. 2009, Mufwene 2010a), note also that syntax, like phonology and morphology, can be considered as a consequence of linearity, although it is constrained by other, cognitive factors.
mere production of “natural cries,” identified in modern terms as holistic vocalizations, to phonetic ones, which Condillac characterized as “vocal signs,” at least according to Arslleff (1984). This is a question that still awaits a conclusive answer (see especially Wray 2002, Tallerman 2007, and Bickerton 2010) and on which MacNeileage (2008) contributes some significant insights (see below).

The hypothesis that the original ancestor of language lies in the natural cries and gestures was also developed by Jean-Jacques Rousseau in his 1755 essay on the origin of language, in his Discours sur l’origine et les fondements de l’inégalité parmi les hommes. For him, cries and gestures are the language the most expressive of humans’ passions, which dominated in the earliest phylogenetic stages of mankind. The evidence can allegedly still be found in “savage” or less advanced populations, particularly in southerly, warmer climates, where humans are, according to him, closer to nature. It is not that those populations are still in the primordial or less evolved stages of human evolution,

(…) the order of their progress is different. In southern climates, where nature is bountiful, needs are born of passion. In cold countries, where she is miserly, passions are born of need, and the languages, sad daughters of necessities, reflect their austere origin (1754; Moran & Gode’s translation, 1966/1986: 46).

According to Rousseau, the passions are still best expressed through tones (and intonation) and gestures, and thus in tonal languages. However, ”while visible signs can render a more exact imitation, sounds more effectively arouse interest” (9), which is why, as communication became less and less passionate and more and more referential/rational, speech prevailed as a means of communication. Like most philosophers and philologists of the
18th century, Rousseau did not realize that tones play a contrastive lexical and/or grammatical function in many languages, although this is not the case in most European languages. On the other hand, like some modern students of the origins of language (e.g., Tomasello 2008, MacNeilage 2008, Corballis 2010, Dor & Jablonka 2010, Mufwene 2010b), Rousseau also assumed that modern language emerged under social ecological pressures:

Mutual need uniting men to a greater extent when sentiment has not done so, society would be formed only through industry. The ever-present danger of perishing would not permit of a language restricted to gesture. And the first words among them were not *love me* [aimez-moi] but *help me* [aidez-moi] (p. 47).

(...) The whole point was not to make someone feel something, but to make him understand. (…) And if some trace of nature remains in the form of language, this too contributes to its austerity (47-48).

On the other hand, unlike today’s scholars, Rousseau interpreted evolution as progress. According to him,

Anyone who studies the history and progress of tongues will see that the more words become monotonous, the more consonants multiply; that, as accents fall into disuse and quantities are neutralized, they are replaced by grammatical combinations and new articulations. (…) To the degree that needs multiply (…) language changes its character. It becomes more regular and less passionate. It substitutes ideas for feelings. It no longer speaks to the heart but to reason (16).

Thus, Rousseau interpreted the evolution of language as gradual, reflecting changes in the *Homo* genus’s mental, social, and environmental structures. He also suggests that
consonants emerged after vowels (at least some of them), out of necessity to keep “words” less “monotonous.” Consonants would putatively have made it easier to identify transitions from one syllable to another. He speaks of “break[ing] down the speaking voice into a given number of elementary parts, either vocal or articulate [i.e., consonantal?], with which one can form all the words and syllables imaginable” (17). This account appears to anticipate Peter MacNeilage’s notion of “syllabic variegation” (see below).

Like his contemporaries and predecessors, Rousseau did not (always) distinguish sounds from the letters, but he also had curious positions about the latter. He associated pictographic writing with “a savage people, signs of words and propositions [with] a barbaric people, and the alphabet [with] civilized peoples” (17).

Fortunately, linguists no longer subscribe to such a stratification of populations, though this was a common belief until the early 20th century (see below). One can even see merits in, for instance, Chinese ideograms, as they enable speakers of mutually unintelligible Sinitic language varieties to understand each other. Although they are pronounced differently by speakers of different varieties, the ideograms convey more or less the same meanings to them. Alphabetic writing is intended to represent spoken words, which vary from one language to another. Over time they lose their isomorphy to the words, to where different (combinations of) letters can be pronounced the same way and the same (combinations of) letters can be read differently. They do not guarantee mutual intelligibility to speakers of different dialects of the same language. In any case, scholars who think of language as technology will credit him with bringing writing as derivative technology into the picture. It’s undoubtedly relevant to ask to
what extent writing has influenced language evolution during the historical period (Wang 2011).

Rousseau also questioned the Adamic hypothesis on the origins of modern language, suggesting in fact that language could not be a gift of God to mankind:

Adam spoke, Noah spoke, but it is known that Adam was taught by God himself.

In scattering, the children of Noah abandoned agriculture, and the first common tongue perished with the first society. That had happened before there was any Tower of Babel. (...)

Rousseau may have been more worried here about the diversification of the language spoken by Noah’s children before they dispersed than about the origins of language itself. He assumed this to have happened before the Tower of Babel explanation in the Judeo-Christian tradition. Language diversification is a topic that has not been sufficiently discussed in today’s literature on the evolution of language(s). The focus has typically been Language as a common endowment of all humans, thus obviating the question of whether the origins of modern languages were monogenetic or polygenetic. If they evolved ultimately from one language, was this original language internally variable or not? Accounts of how linguistic diversity emerged should vary, depending on whether one assumes monogenesis without internal variation or polygenesis with the possibility of variation from one hominin colony to another.
It is thus noteworthy that, unlike most of his contemporaries and somewhat anticipating variational evolutionary theory, Rousseau also addressed the question of the consequences of interidiolectal variation in the emergence of language as a communal phenomenon:

(...) each individual is unique, possessed of, even in some ways identical with, his own nature or “essence” while participating in the whole of nature, the whole of reality, so speak. In so far as there is plurality of individuals, and one individual (or group) practices any of the arts on others, there is a basis for contrasting nature (the nature of one) and art (the art of another) (76).

In modern terms, every idiolect is different in some ways (not always the same) from others. This situation raises the interesting question of how they converge toward the same communal norm (Mufwene 2008, 2010b). Does normalization as emergence of a communal norm entail elimination, or just reduction, of variation? What does it really mean when two or more individuals are said to speak the same language? One should also ask: What role has inter-idiolectal variation played in the evolution of language?

A contemporary of Jean-Jacques Rousseau, the German philologist Johann Gottfried Herder contributed to the debates on some of the above issues, with his Über den ursprung der Sprache (1772) translated and published in Moran & Gode (1966) as Essay on the origin of language (which is cited here). Herder especially argued that human language was not God-given and that it started in animal communication (94). Like Lucretius, he thought that even Hebrew, assumed then to be the oldest language, was too imperfect to be God’s creation (94, 96), though he could have made allowance for change, which normally disturbs the original design, over time. Likewise, he observed:
Now trace, if you can, divine order in the fact that a god, who saw the plan of language as a whole, invented seventy words for the stone and none for all the indispensable ideas, innermost feelings, and abstractions, that in one case he drowned us in unnecessary abundance while leaving us in the other in the direst need which obliged us to steal and usurp metaphors and talk half nonsense, etc. (153).

Thus, the distribution of the vocabulary within and across languages appeared to Herder to be too inconsistent for the latter to be God’s creation(s). Like Rousseau, he concluded that such varying reality could only reflect the work of mankind:

The more numerous the individuals who did the inventing and the more they did so roaming by themselves and in isolation, inventing in general terms only within their own circle for identical things; when later on they foregathered, when their languages streamed out into an ocean of vocabulary, the more synonyms there were. None could be rejected, for which should have been? They were in use with this tribe, this clan, this singer (154).

Herder was rather ambivalent about the origins of language. On the one hand, he argued against Rousseau’s and Condillac’s position that it evolved from emotional cries (102). On the other, he admitted that it may have started as animal-like cries, with the difference that human utterances in the form of speech are volitional and driven by reason (99). He concludes several pages later that early human language “was an expression of the language of all creatures within the natural scale of the human voice” (137).

Herder also argued that knowledge of particular languages is not instinctive; the child learns the language of its social environment. Anticipating modern linguists, he clarified that
the language whose origin is being discussed is the capacity for language, what Ferdinand de Saussure referred to as *faculté du langage* and generativists as Universal Grammar or biological endowment for language. He observed that this capacity, which is also shared by the deaf (118), enables humans to learn naturalistically, through interactions or by immersion, whatever language they have been exposed to. This of course leaves unanswered the question of how in the first place this particular capacity for language evolved in mankind and in what form. It also leaves open the question of how particular languages displaying both structural diversity and common/universal features evolved. I return to this issue below.

Herder also speculated that language started with the practice of naming. He claimed that predicates, which denote activities and conditions, were the first names; nouns were derived from them (132, 160). He thus anticipated partly Heine & Kuteva (2007), who argue that grammar emerged gradually, through the grammaticization of nouns and verbs into grammatical markers, including complementizers, which make it possible to form complex sentences. An issue arising from Herder’s position is whether nouns and verbs could not have emerged concurrently. Not quite in the same way, Allan (2010: 230) comments that Herder was more concerned with proving that “God could not have invented human language because, as the Western Classical Tradition affirms, the logical order is to name entities first and then predicate acts and attributes of them.”

On the other hand, as hypothesized by Dwight Whitney (discussed below), the original naming practice need not have entailed the distinction between nouns and verbs and the capacity to predicate. At that time naming may have amounted to pointing with (pre-) linguistic signs; predication may have started only after hominids were capable of describing states of
affairs compositionally, combining word-size units in this case, rather than holophrastically. This is an issue that cannot be addressed independent of what Bickerton’s (1990ff) “protolanguage” is and when it may have emerged. The question of the order in which other grammatical categories emerged remains open, there being no conclusive evidence in support of the particular order proposed by Heine & Kuteva (2007). In any case, Herder also argued that language was “the child of reason and society” (91). Like the latter, however, he thought that “vowels are the first, the most vital things, the hinges of language” (95), which appears to suggest evolution from primate-like vocalizations.

Another important philosopher of the 18th century was Pierre Louis Moreau de Maupertuis, author of *Réflexions sur l’orgine des langues et la vie des mots* (1748), who is credited with spreading Condillac’s views to Germany. Among other things, Maupertuis sought to answer the question of whether modern languages can ultimately be traced back to one single common ancestor or whether current diversity reflects polygenesis, with different populations developing their own languages. Associating monogenesis with the Tower of Babel myth, which needs a *deus ex machina*, God, to account for the diversification of languages, he rejected it in favor of polygenesis. Note, however, that his position needs Cartesianism, which assumes that all humans are endowed with the same mental capacity and suggests that our hominin ancestors could have invented similar communicative technologies at the same or similar stages of our phylogenetic evolution. This position makes it natural to project the existence of Language as the common essence of languages beyond their differences. Saussure (1916) may be credited with similar thinking when he observed that *le langage* ‘language’ is heteroclitic, anterior to languages and more natural than them, and yet deriving its unity from
the latter (25-26). These considerations provide the background for speaking of universals in
the architecture of language and of (constraints on) parametric typological variation.

In the 19th century, the scholarship on the origins of language was enriched with an
alternative perspective. Charles Darwin commented in *The Descent of Man* (1871) that the
evolution of language was in several ways reminiscent of that of mankind itself. He
hypothesized that it had emerged gradually, had not been given by God nor invented by design
by humans, and could also be explained by natural selection. He was among the first to
correlate the evolution of language with that of the human mind (see also Müller 1861), thus
accounting for why parrots cannot speak (i.e, produce original spoken messages intentionally),
although they can imitate human speech fairly accurately. Showing what an important driver
role the human mind has played in the evolution of language, he argued that it was for the
same reason that other primates do not use their buccopharyngeal structure to speak.

We now know that C. Darwin was only partly right. The other primates’
buccopharyngeal structure is not shaped in exactly the same way as the human’s, although,
based on the parrot’s phonetic accomplishments, we must wonder how critical this particular
structure was for the emergence of language (not speech!) in the first place. After all, humans
that cannot speak produce signed language, which is just as adequate for communication. This
argument may be claimed to support the position that the emergence of the capacity for
language must be distinguished from the emergence of languages. However, one must also
wonder whether the two questions can be considered independent of each other. I return to it
below.
On the other hand, like 18th-century philosophers, C. Darwin also claimed that complex thought couldn’t “be carried on without the aid of words.” For many modern linguists, it is not evident that the language of thought is just like spoken or signed language. It does not appear to be constrained by linearity and can proceed faster than speech or signing. In fact, in its most fundamental form, it does not appear to depend on these communication media/technologies and is ontologically anterior to them. Just because the language of fundamental thought is probably structured differently need not entail that it is less complex than spoken or signed language. The evidence appears to be lacking regarding the role that speech and signing allegedly play in structuring human thinking. It seems so natural to claim that complex language evolved in response to the communicative needs of social minds that were becoming more and more complex.

C. Darwin should be credited for subsuming the topic of language vitality, as it should be (Mufwene 2001, 2008) under the umbrella of language evolution. He paid attention to the expansion of some languages at the expense of others, a topic that linguistics has dealt with recently under the heading of “language endangerment.” However, he also thought of some populations and their languages as less evolved than others, although he did not establish any obvious correlation between the alleged less evolved populations and less evolved languages. This is a recurrent claim throughout the 18th and 19th centuries, whereby non-Europeans are often described as “savages” and the position of their languages on a putative evolutionary trajectory as “primitive,” simply because their morphologies are too complex (the case of agglutinating and polysynthetic languages), or they have no morphophonology (the case of isolating languages), and/or they are tonal. Though C. Darwin also concluded that races are
probably the counterparts of subspecies in biology, he was still a prisoner of the social
prejudices his time (Mufwene 2008, ch. 6). His hypotheses on the evolution of language were
thus tainted by them.

It is worth mentioning in this context the contribution that George Howard Darwin,
Charles Darwin’s son and an accomplished astronomer and mathematician, made to the subject
matter of the evolution of language. He defended his father and Dwight Whitney against
Frederick Max Müller, both of whose views are discussed below. In his essay titled “Professor
Whitney on the origin of language” (1874), G.H. Darwin especially supported the idea that
human language may have started from “the imitational and interjectional sources of [Aryan]
roots,” that the number of initial roots must have been very small at the early stages of true
language and everything else developed later. He elaborates:

It is surely probable that that many generations of quasi-men passed away, who used a
small vocabulary of conventionalised cries, that these cries became more and more
conventionalised, by departing more and more from the sounds of exclamations, from
which they took their origin. Many roots would probably propagate themselves by
fission, and give rise to new roots, gradually to become entirely separate from their
onomatopoeic originals (Harris & Pyle 1996: 288).

Frederick Max Müller had ridiculed as “bow wow theory” the hypothesis that human
language had started from imitations of animal sounds, interjections, etc. In his essay titled
“The theoretical stage, and the origin of language” (1861) Müller argues that what distinguishes
humans from other animals is not so much speech but the “inward faculty which is called the
faculty of abstraction, (...) which is better known to us by the homely name of Reason.” Against
C. Darwin’s unjustified assertion that there are languages without abstract terms (of course spoken by “savages”) he observes that every (denoting?) word “contains a predicative root” which “expresses a general concept” (Harris & Pyle 1996: 197).

Against the “bow-wow theory,” which he associates with Johann Gottfried Herder, Müller argues that although there are interjections and onomatopoetic terms in every language, “as yet no language has been discovered that was so formed.” According to him, “interjections are only the outskirts of real language,” which begins where they end (Harris & Pyle 1996: 23). Although it is conceivable that “some kind of language might have been formed” based on onomatopoeias and interjection, it could not have been “a language like that which we find in numerous varieties among all races of men” (p. 24).

In his 1873 “Lectures on Mr. Darwin’s Philosophy of Language,” Müller is undecided about whether the roots emerged in a protracted fashion or all at the same time. His overall position raises the question of when grammar emerged in the phylogeny of human language and whether, in the first place, our hominin ancestors were capable of producing phonetic sounds at the time they developed the initial vocabulary. Nonetheless, the original roots evolved gradually into the vocabulary of modern spoken languages, some of them becoming grammatical terms, as argued today by Heine & Kuteva (2007).9

Müller also thought that some languages are primitive and simpler, especially those with an isolating morphosyntax. Within the context of complexity/simplicity in language, this is fundamentally the thesis was defended recently by McWhorter (1998, 2001), according to

9Note that, although the book is titled The genesis of grammar, Heine & Kuteva offer no plausible hypothesis of how the overall grammar evolved, beyond the emergence of free grammatical morphemes and a few inflections.
whom creoles are not only young languages but also the world’s simplest languages. According
to the latter, creole “prototypes” (another designation for “radical creoles”) lack derivations,
inflections, and tones, all being features that older languages have putatively acquired through
much longer histories of evolution and accretion. Independent of the forceful and extensive
rebuttal provided by DeGraff (2001), how ironical it is that, for reasons that are no sounder,
much of the 18th and 19th-century literature on the evolution of language considered inflections
and tones to be primitive features! As we will see soon in the discussion of Otto Jespersen’s
views, creoles could thus be considered more evolved than their European lexifiers and other
languages.

Objecting to Charles Darwin’s hypothesis that human languages, like different races of
man, have evolved from a common ancestor, Müller (1873) states:

(…) because the merest tyro in anatomy knew that the different races of man
constituted so many species, that species were the result of independent creative acts,
and that the black, brown, red, yellow, and white races could not possibly be conceived
as descended from one source (Harris & Pyle 1996: 175).

The remark is reminiscent of objections made by some scholars such as Maine (1875)
and Freeman (1881, 1886) to Sir William Jones’ (1786) hypothesis that Sanskrit, Greek, Latin,
and other Indo-European languages had all evolved ultimately from the same proto-language.
They thought than the Indians were too “barbaric” to share genetic ancestry, racially and
linguistically, with Europeans. Otherwise, Müller’s objection conjures up the question of
whether monogenesis and transformational evolution as typically suggested in linguistics, can
account adequately for the emergence of linguistic diversity, especially if no allowance is made
for internal variation in the protolanguage à la Bickerton (1990ff). In this respect, modern linguists would be remiss to overlook the fact that Charles Darwin invoked natural selection as applying to variation which he assumed to obtain in any population. I return to this question below.10

Müller thought that “collateral development” (polygenesis) was more likely to account for some of the differences between dialects and languages. According to him, there is no reason why different individuals at different places and/or different times would have solved the same communicative challenges in identical ways, even when they are endowed with the same “instinct, gift, talent, faculty, proprium” for language (228-229). He was clearly not Cartesian! Nonetheless, he maintained that language was a means “for the formation of thought” (231-232), oddly in agreement with C. Darwin in this case.

Müller was also strongly opposed to the hypothesis that humans are phylogenetically related to the great apes and monkeys. He concluded that C. Darwin must have been confused, ignoring the fact that human language is unattainable by other animals (p. 183). The question is whether this state of affairs is a consequence of Müller’s suggestion that the great apes are not phylogenetically related to humans. One wonders what he would think of today’s attempts to get some great apes to communicate with humans in sign language or with lexigrams, or even of claims that they understand speech.

Müller stipulated a distinction between “emotional language” and “rational language.” Accordingly, the former is something that humans share with animals and in which imitations of

10 Müller’s argument that the origins of language must lie in the kinds of roots posited in genetic linguistics fails to account for language diversification. The comparative method leading to genetic classifications proceeds backwards, suggesting (but not proving) relatedness based on formal correspondences (Mufwene 2008), but it does not explain how diversification occurred or what mechanisms produced it.
“natural cries” fit, whereas the latter is the outer side of the mind and is unique to mankind.

Müller was curious how one may account for the evolution from “emotional” to the “rational language” (p. 225). This is a question that remains hard to answer to date, though one may suggest that our hominin ancestors may have started with modulating their vocalizations into sequences of contrasting syllabic peaks, thus producing different vowels. Jean-Jacques Rousseau had conjectures that they would have done this by inserting consonants between the vowels, to produce what MacNeilage (see below) identifies as “syllabic variegation.” Still, these are just speculations! We need to learn from paleontology and other relevant disciplines about how we evolved mentally, anatomically, socially from Homo habilis to Homo sapiens sapiens to be able to account adequately for the transition.

William Dwight Whitney responded to Müller’s diatribes, in his article titled “Nature and origin of language” (1875), by first articulating a distinction between the “capacity for language,” with which every normal human is endowed, and “speech.” His “capacity for language” sounds closer to Saussure’s (1916) faculté du langage and Chomsky’s (1986) “biological endowment for language” than to their respective langue (opposed to parole) and “competence” (opposed to “performance”). The critical point is that the “capacity” has made it possible for humans to develop language or learn whatever is spoken and/or signed in their social environment. This “capacity” distinguishes mankind from animals, although, as recent findings about bird songs have made clear (e.g., Margoliash2010), the observation should be mitigated. Whitney argues that “the only conscious motive” for developing language was communication, which is certainly at odds with Bickerton’s (1990ff) claim that it was made to enhance human capacity for thought. Then he reformulates the “bow-wow” theory as follows:
Spoken language began (…) when a cry of pain, formerly wrung out by real suffering, and seen to be understood and sympathized with, was repeated in imitation, no longer as a mere instinctive utterance, for the purpose of intimating to another, ‘I am (was, shall be) suffering;’ (…) (Harris & Pyle 1996: 298).

Whitney thus saw the foundations of language in the intentional use of the cries and other sounds. Then he proceeded to address the question of how spoken language has emerged as the dominant mode of explicit communication in mankind:

(…) it is simply by a kind of process of natural selection and survival of the fittest that the voice has gained the upper hand, and come to be so much the most prominent that we give the name of language (‘tonguiness’) to all expression. There is no mysterious connection between the thinking apparatus and the articulating apparatus, whereby the action that forms a thought sets the tongue swinging to utter it (in Harris & Pyle 1996: 300).

As we’ll see below, “natural selection” is not much of an explanation if one does not mention the factors that influenced the resolution of the competition in this particular direction. On the other hand, like Charles Darwin, Whitney seems also influenced by the social prejudice of his time, as in the following passage that should not resonate well to speakers of tone languages:

(…) tone, and still more gesture, has assumed the subordinate office of aiding the effectiveness of what is uttered. And the lower the intellectual condition of the speaker and the spoken-to, the more indispensable is the addition of tone and gesture (Harris & Pyle 1996: 302)
The bias against non-Indo-Europeans is equally strong in the following passage:

An infinity of things can be said in English which cannot be said in Fijian or Hottentot; a vast deal, doubtless, can be said in Fijian or Hottentot which could not be said in the first human language (Harris & Pyle 1996:307).

A great deal can be said in Fijian, Hottentot, and other non-European languages that cannot be said in European languages either, just as there are things that can be said in English but cannot be properly expressed in French, for instance, and vice versa! Whitney also claimed that the earliest form of linguistic communication must have been holographic, consisting of one-word utterances, without a formal distinction between entities and actions; parts of speech and predication emerged later, and even much later the combinations of words belonging in different lexical categories into complex utterances (pp. 306, 308). As noted above, this comes as an apt rejoinder to Herder’s speculations, although, like about everything else, this must be verified by future research. Like his contemporaries, Whitney thought that inflectional or fusional languages represent a high level of “cultivation.” However, he also thought of the evolution of language as the “accidental (...) product of forces and circumstances so numerous and so indeterminable that we cannot estimate them and could not have predicted their result” (312-313). In this respect, he is like today’s emergentists, for whom evolution is largely driven by self-organization.

Several other scholars, many of them anonymous, published on the origins of language in the 19th century. One of the non-anonymous was the social anthropologist Edward Burnett Tylor. In a 1866 paper titled “On the origin of language,” he attempted to support the “bow-wow theory” by invoking the ways in which “savages” in the colonies named the Europeans and
goods they brought, using words based on sounds associated with the goods. For instance, the Sea Islanders in the Pacific allegedly used *pu* for musket, *puhi* for ‘to blow’ (as they though the European blew in the gun), *puff* for the smoke coming out of the musket, and *pupuhi* for the barrel of a gun. He concluded:

If several languages have independently chosen like words to express like sounds, then we may reasonably suppose we are not deluding ourselves in thinking that such words are highly appropriate to their purpose. Thus we have such forms as *pu, puf, bu, buf* recurring in the most remote and different languages with the meaning of blowing or puffing (Harris & Pyle 1996: 91).

In a note, he illustrates his claim with the following list: “Tongan *buhi*, Mahjori *pupui*, Zulu *pu*, Hebrew *puach* &c.” He likewise finds evidence for the common origin of language in the cross-linguistic similarities among words used for ‘father’ and ‘mother’, words which, according to him, vary more in their consonants than in their vowels (95). It does not matter at all to him that some terms that are phonetically similar sometimes denote opposite entities. It is striking how 19th-century scholars really thought that the colonial populations were apparently less evolved anatomically and/or mentally and therefore may provide evidence for how language evolved. Nowadays, we have to deal with Bickerton’s (1990ff) controversial claim that pidgins (typically those based on European languages) represent fossils of his “protolanguage.”

Nobody articulates the above thesis as explicitly as the Reverend Frederic William Farrar, who, in his (1865) book *Language and languages*, asserts:
Savage languages are (...) the best to show us what must have been the primitive procedure; but we can trace the same necessary elements of words in languages far more advanced (Harris & Pyle 1996: 59).

He also argued that language is too imperfect to be God’s creation. For him, the multiplicity of languages suggests that language is an invention of mankind, “developed by intelligence and thought. (...) It may be unable to keep pace with the advancing power of abstraction, but it can never by any possibility anticipate or outstrip it” (45). He adduced evidence for humans’ ability to invent languages from what is now known as “home sign language” and from the ability of abandoned children living in group to develop a language of their own (54-55). This evidence should actually be used to highlight the fact that, from an evolutionary perspective, the language phenomenon that is discussed is a communal one, which does not emerge unless there is population of individuals, at least two, who interact with each other. (See also Lieberman 2006: 354ff.) Unless a situation such as the Nicaraguan boarding school for the deaf arises, no particular communal sign language emerges from isolated home sign languages invented by deaf children to interact with their speaking relatives but not with other home signers.

Farr thought that the modifications of European languages in the colonies may shed light into how language evolved, just like the invention of “Argots” by “the dangerous classes throughout Europe” (66). Because they are not intelligible to speakers of the languages from which they have evolved or been developed, they “must, from their very nature, remain uncultivated” (66). Although he assumed that language emerged gradually, he discussed the complexity of “savage languages” in a way that reveals again strong prejudice against non-
Europeans. This was indeed the century of “la mission civilisatrice” or “the white man’s burden,” ideologies developed by the French and the Britons, respectively, to justify exploitation colonization. Being non-European, isolating languages were deemed primitive and, according to Farr, also agglutinating and polysynthetic languages. Putatively, the “apparent wealth of synonyms and grammatical forms is chiefly due to the hopeless poverty of the power of abstraction” (Farr’s italics, 78). This would allegedly be obvious in languages that lack the copula. All such remarks that are undoubtedly offensive today, at least to some of us, underscore how cautious we must be in how we use our findings about some modern linguistic systems to make inferences about the evolution of language.

We should, of course, not ignore Friedrich Wilhelm Christian Karl Ferdinand Freiherr von Humboldt, who conceived of language dynamically in terms of the “energeia” that translates the “inner linguistic sense” into the outer expression, in which the universe of experience is categorized differently from one community to another. He may be considered the forerunner of the Sapir-Whorf hypothesis. What is especially relevant to the study of the evolution of language, a topic on which Humboldt did not say much, is the individuality of the inner sense, which makes every idiolect different but also every dialect and every language different, as the dynamics leading to social norms vary from one community to another. Humboldt also claimed that different populations have not evolved identically in developing their linguistic individuality. He characterized the evolution of language as what Harris & Taylor (1989: 177) paraphrase as “the continuous outcome of [the] dialectic between the inner linguistic sense and sound-form; that is, between energeia and ergon.” Every individual speaker contributes to
this process, as they reshape but do not reproduce perfectly the language of their social
environment.

Then we must now ask how the different individuals, innovators and copiers, ultimately
converge toward shared communal norms (Mufwene 2008). Note that invoking either the
“invisible hand” or “self-organization” is simply admitting that we cannot yet articulate
explicitly how the mutual accommodations that speakers/signers make to each other in their
ever-changing dyadic and triadic interactions, evolve to these “conventions.” It is like saying
that languages take lives of their own when in reality the agents and hosts are the speakers or
signers (Mufwene 2001). The conclusion does not take us farther than Saussure’s (1916) correct
observation that “la parole fait évoluer la langue” (‘speech makes language evolve’), without
explaining how it does it.

The forgoing gives us a representative canvas of the state of art in the 18th and 19th
centuries about the evolution of language. It also gives us a sense of the kinds of controversial
speculations that led the Société de Linguistique de Paris to ban, in 1866, any linguistic
discussions on the subject matter at its meetings. Only one more scholar is worth noting from
the period, the semanticist Michel Bréal, who argued against the French ban, on the ground
that it impoverished the subject matter of linguistics. Bréal saw languages as being reshaped
constantly by their speakers and rejected his contemporaries’ organic approach to them. He
thought the approach was inaccurate not only in casting some languages as less evolved than
others but also as decaying or dying. He would undoubtedly have opposed the present
discourse about language birth, vitality, and endangerment, as well as of moribund languages,
though it can be argued that languages conceived of as species (Paul 1880, Mufwene 2001) are
born and may die in the same protracted ways biological species do, unlike individual organisms
(Mufwene 2008: 208-209).

As noted above, the French ban appears to have been respected even outside France. It
became almost taboo to discuss the evolution of language throughout most of 20th century,
until the 1990s, which I discuss in the next section.11 Among the exceptions to the rule are the
Dane Otto Jespersen, in his book *Language: Its nature, development and origin* (1922) and the
American Morris Swadesh, whose book *Origin and diversification of language*, written in 1967
but published posthumously in 2006, also changed the nature of the discourse.

Otto Jespersen’s contributions to the study of the origins of language include his
argument that the “bow-wow” theory (claiming the origins of language in the imitation of
sounds in nature), the “pooh-pooh” theory (based on human interjections), and the “yo-he-yo”
theory (based on human sounds during collective physical work) need not dismissed offhand.
“Each of the three chief theories enables one to explain parts of language but still only parts,
and not even the most important parts—the main body of language seems hardly to be
touched by any of them” (416).

A more important and relatively uncontroversial contribution of Jespersen’s is his
position that we can learn indirectly about the origins of language by focusing on infant
language during the first year of what is still nonlinguistic interaction with the caretakers,
focusing on its cooing, babbling, and gestures. Later scholars such as Tomasello (2008) have

11 According to Hombert & Lenclud (in press), much of this practice has to do with what the linguists thought was
the subject matter of their discipline. Ferdinand de Saussure was allegedly more interested in languages (*les
langues*), which consist of systems, are unified, but are not organic. He was less interested in Language (*le
langage*), which he putatively considered “multiform and heteroclitic” (as noted above), straddling between
domains that are “physical, physiological, and psychic” [i.e., mental?].
suggested the development of joint attention, observable in human infants but not in great
apes, as an important determinative feature in the evolution of language. Babies’ ability to take
turns in vocalization games also appears to be evidence of joint attention.

Jespersen also advocated paying attention to trends in how human languages have
evolved in documented history, though the conclusions he suggests are controversial. He points
out that European languages such as English and French have evolved from more complex
morphosyntax to simpler, analytic ones and from structures putatively harder to learn and full
of irregularities to more regular and systematic ones. “The direction of the movement is toward
flexionless languages (such as Chinese, or to a certain extent Modern English) with freely
combinable elements” (425). If, like Jespersen, one adopted from the misguided 19th century
the view that some languages and related populations are less evolved than others, this would
not rank German (which Jespersen does not discuss in this context) very high on the scale, nor
Basque, for which he finds excuses for not lumping in the category of “primitive languages.” His
conclusion is that the initial language must have had forms that were more complex and non-
analytic; modern languages reflect evolution toward perfection which must presumably be
found in languages without inflections and tones. It’s not clear what Jespersen’s position on
derivational morphology is. In any case, his views are at odds with Bickerton’s (1990)
hypothesis that the protolanguage, which must have emerged by the late Homo erectus, was
much simpler and had minimal syntax, if any. While Bickerton sees in pidgins fossils of that
protolanguage and in creoles the earliest forms of complex grammar that putatively could
evolve from them, Jespersen would perhaps see in them the ultimate stage of the evolution of
language to date. Many of us today find it difficult to side with one or the other position.
Rather outrageous is Jespersen’s claim that languages of “savages” in Africa and the Americas could inform us about the origins of language, not only because they have longer words (with complex morphology, 421), but also because they use difficult sounds such as clicks and rely on tones (419), which, according to him, suggests that their speakers are “passionate” (420). “Primitive languages” were accordingly sung, poetic, and figurative (432). Being tonal and using numeral classifiers (429-430), Chinese would be lowered on Jespersen scale of evolved languages, though it might be better off than languages that are both tonal and have complex morphological structures. It’s of course worse for languages that have no terms such as color for abstract concepts or general categories. Jespersen concludes, among other things: “Primitive units must have been more complicated in point of meaning, as well as much longer in point of sound, than those with which we are more familiar” (425). As pointed out in Mufwene (2008, ch. 6), it’s noteworthy how late race has lingered as a factor in accounts of language evolution in linguistics.

In contrast, Morris Swadesh’s arguments are grounded on the then state of art about phonetic and morphological properties of several languages around the world, as well as on paleontological and archaeological evidence. The examination of these leads him to draw, among others, the following conclusion which anticipated Mufwene’s (2010b) comparison of the pace of the evolution of language with that of computers, in shorter and shorter intervals of time as we near the present: “It seems probable that language developed in the same general lines as other aspects of human culture: very slowly at first and gradually faster and faster” (Swadesh 2006: 45).
However, like many others before him, Swadesh hypothesized that language started with naming. The words may originally have been imitative of sounds heard in nature; then they were allegedly replaced by “exclamative” ones, and the latter by “a purely expressive paradigm and an attention-calling or demonstrative one” (182). He believed that numerals “were among the last to take on their present character” (183). His world-wide comparison of demonstrative forms led him to the conclusion that “before the neoglottic period, perhaps in the paleoglottic, fewer phonemes were differentiated than in contemporary languages” (199), suggesting that even the phonetic inventories of modern languages must have evolved gradually, not becoming fully modern until as late at the emergence of agriculture.

Neurolinguists such as Philip Lieberman (2002) believed phonetic language to have emerged earlier with the late *Homo erectus* or archaic *Homo sapiens*. Although this position has been revised (see below), the most relevant point here is that different parts of language appear to have evolved incrementally and no particular module seems to have emerged abruptly. It does not appear likely that *Homo erectus* or archaic *Homo sapiens* waited until a complete phonetic inventory was in place before producing their first words, or wait until there was a complete vocabulary with identifiable morphemes before producing phrases and sentences. Although ontogeny does not recapitulate phylogeny, child language acquisition discourages us from speculating about the phylogenetic emergence of language in strictly linear terms. Then, as now, early lexical and phonetic developments must have proceeded concurrently. One may also speculate that the expansion of the lexicon drove the elaboration of a wider phonetic inventory, as this enables more lexical distinctions.
In the style of evolutionary biology, Swadesh proposes a monogenesis account which assumes inter-individual variation in the “vocal behavior” of the relevant hominins: “in addition to individual differences, there could have been variations by subspecies and by locality, but all within essentially ‘one language’” (213). Putatively, hominin populations equipped with similar anatomical and mental structures, living in different localities, and having developed comparable communities in which they experienced similar pressures to interact explicitly (in order to cooperate more successfully) would have developed comparable but non-identical means of communication. This sounds quite plausible, as East Africa, where most of the hominin fossils have been found, is a vast geographical area; to date no paleontological evidence suggests that an early *Homo habilis* or *Homo erectus* population dispersed out of one single locality to the rest of the land.

As argued in Mufwene (2008, 2010b) different individuals endowed with the same capacity for language need not have innovated exactly the same strategies for the same communicative needs. ¹² Locally and regionally, there must have been plenty of variation, as argued by Johann Gottfried Herder, which set the innovators’ productions up for competition among their imitators. This would have set things up for variational evolution, through competition and selection among available alternatives even within the same language, as members of the relevant populations converged toward their respective norms. Dor & Jablonka (2010: 138) call this normalization process “canalization.”

¹² According to Dor & Jablonka (2010: 139), this variation “is inevitable given genetic differences, anatomical differences between brains, differences among ontogenies, and differences of processes of socialization,” which amount to “different developmental trajectories.” Mufwene (2008) underestimated the consequences of biological variation across individuals when he invoked “different interactional histories” (120, 126) in his account of inter-idiolectal variation.
Swadesh assumed that in the earliest, longest stages of the emergence of language, communication among hominins remained instinctive and did not vary significantly from one locality to another; therefore it is normal to assume that our hominin ancestors spoke the same language. According to him, significant diversity started to emerge about “half a million or so years ago,” when the earliest forms of phonetic and symbolic communication, which he calls “formal language” started to emerge (214-215). The estimated period is consistent with that proposed by Corballis (2002) and Lieberman (2002), though they now think otherwise (see below). This is a stage when Swadesh believes it was possible for different individuals to innovate different linguistic forms for the same denotata and presumably different structures for the same meanings. (This is indeed reminiscent of Herder’s account of the origin of synonyms in various languages).

Swadesh’s hypothesis raises the question of whether his monogenesis position is not really polygenesis; it leaves open the possibility that two late Homo erectus or archaic Homo sapiens populations developed languages that were not structurally identical and/or mutually intelligible. As is obvious from Bickerton’s (1990ff) hypothesis of the protolanguage from which “true language” evolved, all may depend on what particular stage in the evolution of the Homo genus and what particular phase of its vocal communication one decides to identify as the beginnings of modern language. This entails particular assumptions about the size of the phonetic inventory and the nature of grammar, which are captured eloquently by Ray Jackendoff’s (2010) title “Your theory of language evolution depends on your theory of language.”
Swadesh is also one of the very few scholars who have considered the implications of population movements for language evolution. As the migrants’ languages come in contact, often coexisting in competition with each other for the same communicative functions within the same larger population, some may drive others to extinction. Typically, the prevailing language undergoes structural changes and can even speciate into separate languages. Seldom have linguists who are concerned with language endangerment and loss today cast the subject matter from this perspective, which Mufwene (2001, 2008) articulates in his ecological approach. The contact-based approach to language birth, endangerment, and death makes language evolution more similar to biological evolution especially regarding the consequences of language practice under differing ecological pressures. The relevant ecology includes not only the mental and anatomical structures of hominins and humans, but also the socioeconomic conditions that determine their population structures and their particular interactional dynamics. Indeed, the latter also trigger migrations, which history has shown to affect both the vitality and structures of languages.

3. Recent Developments

As a research topic, the evolution of language has expanded into a productive and stimulating, though diverse, area of scholarship since the 1990s. Often referred to as “language evolution,” the topic has also evolved beyond concerns with the origins of language, making allowance for discussing language birth and death, as much as language speciation. While philosophers and philologists do not appear to deal with it any more, linguists can hardly claim it as a private domain of their own. No insightful or informative linguistics publication on the subject matter is based exclusively on linguistic data. Interestingly, this is also an area where,
formal linguists, who have claimed the center stage since the late 1950s, have probably been unable to prevail over other scholars, especially since the notion of Universal Grammar (UG), or “biological endowment for language,” or “language organ” (Chomsky 1986ff, Anderson & Lightfoot 2002), or “bioprogram” (Bickerton 1981ff) is still a black box whose contents have not been articulated in sufficient detail and whose necessity to account for how language works and/or is learned has increasingly been disputed (see below).

Noam Chomsky’s occasional contributions to the discourse (e.g., Hauser, Chomsky, & Fitch 2007, Chomsky 2010) has raised controversy, primarily for not considering much of the non-linguistic evidence and ignoring objections to his claim that recursion (to which Lieberman 2006, 2010 prefers the term “reiteration”) is the most important characteristic of the capacity for language that is not shared by other animals. Others have objected that recursion distinguishes human languages from other animals’ means of communication only in degrees; some form of it seems to occur in, for instance, some bird songs (Margoliash & Nusbaum 2009). Moreover, it may be a general cognitive, problem-solving strategy, as it is attested outside language, such as in mathematics and musical scores, unless the latter domains are claimed to be consequences of language. Lieberman (2006: 4-5, 2010: 164) says it can be identified in dancing too. More and more scholars also argue that there is little, if not nothing, in humans’ mental capacity or structure of the brain that exists only for language and is not part of their

13 Chomsky (2010) goes as far to postulate that that UG has remained unchanged since about 50,000 years ago, when Homo sapiens’s exodus out of Africa started and modern language was in place. It may have emerged about 100,000 years ago, when, he presumes, “some genetic event rewired the brain, providing the mechanisms for language, with the rich syntax that yields the modes of expression of thought that are a prerequisite for social development and the sharp changes of behavior that revealed in the archaeological record and presumably occasioned the trek from Africa” (58). The same event would have enabled symbolic thought. This in itself is not proof that language is a consequence of UG, the latter may simply reflect common characteristics of languages produced by similar social minds in different settings.
general learning adaptation. Moreover, language has increasingly been interpreted as the gradual cumulation of exaptations of particular mental capacities and anatomical organs for communication (Hurford 2006, Oudeyer 2006).

Chomsky’s (2010: 51) stipulation that “The study of the evolution of language is specifically concerned about UG and its origins” is questionable. An important reason why several scholars have raised issues with it has to do with whether language boils down to UG only, in exclusion of the physical architecture of language(s). Chomsky’s usual equivocations with the disjunctive phrase “mind/brain” has not been informative about the nature of UG. Neurolinguistics has revealed that there is no particular part of the brain that can be identified as the “language organ.” The fact that the parts of the brain implicated in language are not only situated in different regions but also associated with domains other than human communication precludes the possibility of a discontinuous modular language organ. The fact that UG appears to be mental, a property of the mind rather than of the brain as physical matter, clearly leaves open the possibility that it is a (by)product of something else in the many brain activities, including its capacity to produce language. Anderson & Lightfoot (2002) do not address these issues, although the book is specifically on this topic. Taking the notion for granted, they decide to define it “in functional rather than in anatomical terms,” as it is “not localized in the manner of the kidney” (xiii). As a matter of fact, they sometimes identify language itself, like the “knowledge of language,” as language organ (e.g., p. 8). 14

14 A staunch critic of Chomsky’s UG is MacNeilage (2008), to whom I return below. His perspective is somewhat different from that adopted here but is noteworthy, especially from the point of view of whether it is a notion worth positing at all and whether it is not a consequence of language emergence rather than its cause. Concluding especially from the finding that the FOXP2 gene is not associated exclusively with language nor restricted to humans (see below), he concludes: “there is currently no validity to the claim that UG has a specific genetic basis (298, MacNeilage’s italics).
One must also be aware of an important difference between, on the one hand, how “modularity” is invoked here in reference to concurrent engagements of different parts of the brain during the production of utterances and, on the other, the way the concept is used in technology to characterize the way different parts of a complex machine just complement each other. While complementarity is true in the case of language, it is not evident that, as noted above, the brain parts are specialized for language only. For instance, the Broca’s area plays a central part in coordinating sensorimotor activities that have nothing to do with language. Mirror neurons, which have been invoked recently to play a role in the reproduction of sounds, also play an important part in the reproduction of other physical activities. The lateralization of the brain is not exclusively associated with language either. And as, Lieberman (2010: 171) explains, the FOXP2 gene, which was initially too hurriedly associated with language alone, also “appears to have a role in facilitating learning and precise motor control in human and other species” (see also Lieberman 2006: 218-222).

If UG contains no properties that are unique to language, then we are perhaps back to Condillac’s and other 18th-century philosophers’ interest in the evolution of language as a way of learning about the evolution of mankind and their mind. Thus some linguists such as Jackendoff (2010), and myself for that matter, do not find it particularly rewarding to focus on a questionable notion of faculty of language, especially in the “narrow sense” (Hauser, Chomsky, & Fitch 2007). It impedes approaching the evolution of the language in relation to that of, say, human cognition in general and animal communication.
As a matter of fact, several scholars appear to align themselves with Pinker & Bloom’s (1990) position that an all-purpose mental capacity, or various phases of its development, at (a) particular stage(s) of the *Homo* phylogeny, would have sufficed to produce language.\(^{15}\) Assuming that what emerged are individual languages but not Language per se (a position consistent with Saussure’s “*la parole* (...) est nécessaire pour qu’une langue s’établisse” p. 37), an alternative interpretation of UG is that it is the common denominator of the properties and architectures of the different languages. Thus, UG may not be a particular mental infrastructure that emerged at some particular phylogenetic stage of the *Homo* genus and enabled or facilitated the emergence of language but simply a consequence of this evolution.

Subscribing to the distinction between I-language and E-language, Chomsky correctly dismisses the hypothesis that language emerged in the form of “language of thought” (LOT), citing lack of linguistic evidence and the fact that “we have almost no idea what LOT would be” (226, n. 24). However, he associates language diversification with the externalization of language. According to him, the reason why there are so many languages “might be that the problem of externalization can be solved in many different and independent ways, either before or after the dispersal of the original population” out of Africa (61).

Consistent with some remarks in Part 2, one may want to justify this position by invoking the Cartesian position that the mind is the same in all members of *Homo sapiens sapiens* and would work the same way (allowing a limited number of alternatives) in speaking

\(^{15}\) Hombert & Lenclud (in press) state more specifically:
The capacity for language is considered as a derivative capacity and its emergence as the secondary or induced effect of the emergence of a general cognitive competence. It may have followed from the aptitude that only humans would have been endowed with to read and share the other’s intentions (my translation).
or signing. However, this position does not entail that they must of necessity be endowed with a language-specific UG in order to accomplish this. We just do not know yet. A general-purpose problem-solving cognitive capacity can lead to the same results, if interactants develop similar technologies for communication. As an abstraction UG could amount to common properties of these technologies, i.e., languages of particular communities, properties that are tantamount to universals of language and typological variation on particular parameters. Alternatively conceived of as a body of constraints on the architecture of language, it can boil down to specifications of what the general-purpose problem-solving cognitive capacity permits and does not permit, bearing in mind that some of the constraints may simply consequences of the materials used in the technology.

Chomsky too speculates that the externalization “might have been a process of problem-solving using existing cognitive capacities” (61). This appealing position need not be wedded to the assumption of UG. Those who believe that modern language emerged to facilitate communication among humans can ask why I-language, associated with UG, need be considered anterior to E-language; it may also be conceived of as patterns emerging from successful utterances, as suggested in Construction Grammar or by Complexity Theory. They may also want to know whether I-language need be uniform from one speaker to another, whether it is not internalized from actual vocal and/or signed communication (variable though Speakers of the same language need not have identical grammars in order to communicate with each other; all they need is for each to have a system that makes sense of the others’ utterances (Mufwene 1989). As observed by Chomsky himself, “speech communication is a more-or-less affair, in which the speaker produces external events and hearers seek to match them as best they can to their own internal resources” (2010: 57). One may add to this Sperber & Origi’s (2010: 128) similar comment: “The success of inferential communication does not require that the communicator and audience have the same semantic representation of the utterance (…). It is enough that the utterance, however they may represent it, be seen as evidence for the same conclusion.” Context plays no less role than grammar to facilitate adequate interpretation of other interactants’ utterances (signed or spoken).
it is), and whether it too should not be considered as part of the hybrid technology developed with parts of the human mental and anatomical structures exapted for communication.

However, Chomsky argues that only I-language should be in the domain of investigations on the evolution of language. In his own words, “any approach to the evolution of language that focuses on communication, the SM [sensory-motor interface] system, or statistical properties of spoken language, and the like may well be seriously misguided” (2010: 61). This position raises the issue of whether in some cases students of the evolution of language should not start by agreeing on the particular conception of LANGUAGE they are assuming. This is especially important, because Chomsky’s reaction to the question of “why languages appear to vary so widely” is that this phenomenon “is an illusion, much like the apparent limitless variety of organisms” (62). He is of course driven to this remark by his strong minimalist theory, which appears to treat typological variation as a linguistic epiphenomenon less important than the core of language accordingly defined by UG.

Could language really have originated as an abstract and uniform UG, thanks to the brain-rewiring event Chomsky hypothesizes, which would have led different Homo sapiens populations to match their concepts with superficial forms/structures variably from one interactive community to another? Or, as surmised above, is the putative UG only the consequence of similarities among the ways members of the Homo genus have gradually solved their communicative problems, variably from one community to another? As remarked above, this evolution would have been enabled by the same mental capacity that evolved gradually in them and, under various social ecological pressures, it would have led them to coopt their
anatomical structures to produce the relevant technology for communication, but not necessarily in identical ways.

It is certainly necessary to agree on a particular definition of language, so that we may determine whether or not we seek to explain the same subject matter. As pointed out in Mufwene (2001, 2008), the Saussurean conception of language as “system,” which still prevails in linguistics, is at odds with the folk notion of language as the particular way a population speaks. In fact, lay people speak of languages, not Language (which is a philosophical concept); for them a language is just a way of speaking. It is not evident that the earliest speculations about the origins of human communication were not about languages rather than about language, hence the long held belief among some that Hebrew was the original language. 17

A problem in linguistics about what is language also arises from the status of phonetics. It is not obvious that linguists agree on whether it is part of language proper or is just a modality, as suggested, for instance, by Hombert & Lenclud (in press). This is a legitimate question, as some like to focus on rules and constraints seemingly omitting that these apply to physical items called words, which couple meanings (abstract entities) with forms. The architecture of language is built on them. It’s hard to imagine that any grammar at the UG level or at the specific-language level, say I-language, could exist without physical entities that it applies to.

17 Discussing the evolution of languages can also complicate the picture in a different way, owing largely to the role of speciation in evolution. Some languages are derivative of others and therefore evolved much later. The populations that produce them did not have to follow the same steps as earlier hominins in proceeding from no language to language, although from the points of view of gradualism and self-scaffolding (Wimsatt & Griesemer 2007), some of the same exaptation processes may have been involved. More fundamentally, we do not have a clear sense of the number of, or the particular, languages that emerged concurrently in the relevant hominin populations.
The above considerations make it natural to investigate how typological diversity emerged between languages and sometimes within individual languages. The diversity regards, among other things, the specific phonetic inventories that different populations of speakers have chosen and whether or not they made tones phonemic. It also has to do with whether they chose agglutination, polysynthesis, inflections, or isolating morphosyntax to code information around the main verb, whether the verb comes second or in another position in the sentence, whether they use Nominative/Accusative or Ergative/Absolutive syntax to code agency, what strategies they use to specify reference (for instance, do they use noun classifiers or genders?), how they articulate tense distinctions, etc. (See Hurford 2008 for a complementary discussion.)

Although syntax has long been privileged in formal linguistics, it has not at all claimed center stage in the scholarship on the evolution of language, despite all of Bickerton’s (1990ff) claims about the nature of his phylogenetic protolanguage. Very little has been written about, for instance, the evolution of combinations of words, constraints on the positions of particular constituents within larger units, and movements of constituents to particular positions in sentences. If Chomsky is correct in claiming that typological variation is an illusion, then something should be said about how the common aspects of these syntactic phenomena evolved.

The above question may be more difficult to answer than that of why delimiters such as tense, aspect, and mood for the verb as well as number and class for the noun evolved in language. One can surmise that for communication to be more precise, or less vague, events and conditions must be situated in time and reported differently according to whether they are
facts or not, and whether the referents of nouns must be specified according to cognitive requirements that interest particular populations. It must be equally informative to find out why, for instance, the verbal complements of volitional verbs in inflectional languages are more likely to be used in the subjunctive or infinitive. Are the constraints purely linguistic or cognitive?

An answer to the question of why predication emerged, one that Herder considered to be central to the study of the evolution language, can also be attempted here. We can resort to the way the distinction between TOPIC/SUBJECT and PREDICATE has been traditionally explained in grammars, viz., what the utterance is about (the TOPIC) and what state of affairs (ACTIVITY or STATE) is associated with the topic. However, much more is involved in predication than just having a head of the predicate phrase. The evolution of the organization of an utterance into TOPIC/SUBJECT + PREDICATE PHRASE for most languages needs some explanation, as much as the ways in which materials are structured into the predicate phrase. Would a UG-based account be satisfactory? Or would it be more informative to invoke general-purpose problem-solving cognitive capacity to explain how different populations developed their communicative technologies which nonetheless share similar principles? We probably need considerations not exclusively grounded in linguistic theory to answer this question.

As pointed out by Jackendoff (2010: 69), an important problem with “syntactocentrism” is that it does not account for “the evolutionary source of the lexicon.” Questioning the centrality of syntax in generative grammar, Bolinger (1973) had argued, along with generative semanticists, that syntax was a consequence of the lexicon, being a body of generalizations from the ways that individual lexical items behave in utterances. It captures morphosyntactic
similarities that lexical items display among themselves. Jackendoff (2010: 70) is also right on the mark in pointing out that Chomsky’s approach makes it hard to explain how lexical categories (and presumably the ensuing syntactic categories) emerged. Were they arbitrarily pre-determined? Why do they not all occur in all languages or in identical ways? Is it also an illusion that some languages have articles while others do not, or that inflectionless languages may not have a finite/nonfinite distinction for the verb, or that the infinitive may not have an identical syntactic status from one language to another?

Ideologically germane to Chomsky’s reliance on UG but drawing very different conclusions is Derek Bickerton’s work since his book *Language and species* (1990). Bickerton started with the claim that modern human language evolved almost abruptly from a “protolanguage” used by our hominin ancestors up to *Homo erectus*. The protolanguage putatively consisted of a (limited) vocabulary without much grammar and may have combined both words and gestures. The protolanguage “is not a true language, but it’s made up of languagelike elements” (2010: 40). Its users produced “short and shapeless and disconnected utterances” as one may encounter in especially child language and incipient pidgins, which he considers to be its modern fossils (40). They lack the kinds of syntactic rules and constraints one finds in a “true language.”

18 An example of this can be adduced from the fact that the French infinitive is more like the English gerund (defined as a verbal noun) in its ability to be used in a possessive construction and being used in complement contexts where the English infinitive cannot be used, such as after prepositions.

19 Note that some scholars, including Corballis (2010) and Lieberman (2010) now think that modern language may not have originated before 50,000 years ago or so, thus, much later than *Homo erectus*, apparently during *Homo sapiens sapiens* and this event may have coincided with the last exodus out of East Africa. (I return to it below.)
Like Slobin (2002), Mufwene (2008, 2010b) argues against this characterization of particularly pidgins and child language, products of humans endowed with *Homo sapiens* sapiens’s mind. Moreover, one must be cautious; the human child is not creating a language but learning the language of its social environment. The producers of a pidgin did not start from the absence of a language. Nor did their minds regress to the state of *Homo erectus*’s mind when faced with the challenge of communicating with another population in a language other than their own and without sufficient exposure to the target language. If anything, pidgins tell the extent to which a modern language can be reduced without losing the status of a language, therefore what are the most central/essential architectural materials a language cannot do without. Assuming that language has evolved gradually, they also tell us what in the architecture of language is so deeply entrenched that it cannot be dispensed with (Wimsatt 2000). Gradual emergence assumes a lot of scaffolding (Wimsatt & Griesemer 2007), a position quite implicit in grammaticization hypotheses, in which later developments are built on earlier ones. That order of evolution would more or less determine what can be dispensed with, in a less costly manner, if the system must be reduced to an earlier functional modern stage. We also learn that the architectural complexity of a language can be correlated with the communicative needs of its creators/users. Pidgins are by-products of contact settings where communication was minimal and sporadic (Mufwene 2008).

Bickerton also hypothesizes that language must have started with labels that were iconic. Symbolic communication would evolve later, making human language more different from animal means of communication. It’s not clear whether symbolic items were already present in the putative protolanguage or whether it emerged in “true language.” I am not sure
that his quoting Terrence Deacon’s assumption that “symbolism” emerged “probably not until *Homo erectus*” (2010: 50) answers the question, though he concedes to Deacon (1997) that symbolism, rather than syntax, is what distinguishes humans from animals (Bickerton 2010: 49).

Symbolism enabled what Hockett (1959) identified as “displacement,” the ability to talk about entities and states of affairs that are not in the *hic et nunc* of interactions, and thus the ability to talk also about the past and the future, as much as about fictional scenarios. All human populations have developed the capacity to narrate stories and even construct myths of all kinds thanks to the world-creating power of language. This is not possible in animal communication, even after they have been taught to communicate with humans. The reason appears to lie not so much in our invention of symbolic language as in our being endowed with the mental capacity that enabled us not only to produce it but also to do more with it.

On the other hand, Bickerton appears to contradict himself in some ways, when he elaborates on the architecture of his “protolanguage”:

(...) the words of protolanguage, even if vocal, could not have been divided into component parts [i.e., sounds], and would likely sound to us like meaningless grunts or squawks. But, like today’s words, each would have a fairly well-defined range of meaning, and that meaning, rather than relating directly to the current situation, would refer to some relatively stable class of objects or events, regardless of whether or not these were present at the scene (2010: 66).

This sounds very much like symbolic communication minus phonetics and syntax. Except for symbolism (an important difference already), protolanguage would be a more elaborate version of primates’ calls and gestures, raising the question of why Bickerton compared it to
child language and incipient pidgins, which have human linguistic properties. These varieties have basic syntax, as variable as it may be in the case of pidgins! In addition, it is not clear how consistent he is with the concession he makes to Deacon. If the latter version is right, reference would have started before “true language” emerged, though the latter would refine it with specifiers such as demonstratives and articles, as well as possessive constructions. The question of when such strategies developed is as worth investigating as that of when parts of speech emerged and what the emergence entailed regarding the complexification of the architecture of grammar.

One of Bickerton’s most problematic positions is his claim, like Condillac’s, that language emerged to enhance human capacity for thought. In addition to Chomsky’s (2010) observation that “we have almost no idea what LOT would be” (226, n. 24), we must ask why anybody would need a language of thought that would slow down their thinking process with the constraints of linearity? What is so more efficient about conceptual categories that are labeled linguistically when they can be identified non-linguistically, as is often obvious when speakers do not have words for ideas they want to express? Granted, human languages have a world-creating capacity; but isn’t language more for sharing conceptualizations across speakers rather than for conceiving the scenarios that are shared?

In a different vein, some linguists such as Croft (2000), Wang & Minet (2005), Mufwene (2008, 2010b), Beckner et al. (2009), and Lee et al. (2009) also now conceive of languages as complex adaptive systems, which presuppose no permanent sets of rules that guide linguistic behavior. Instead, linguistic rules are interpreted as emergent patterns produced by self-organization, in a way similar to other natural phenomena involving complexity. This position
does not remove from mankind their agency in the emergence of language; it simply means that, throughout the *Homo* genus phylogeny, the individual acts of solving communicative problems did not include anticipation or a plan to develop what Antoine Meillet identified as a “système où tout se tient.” The interactants never had/have any foresight of what their communicative “system” will be like in the future or once it is presumably completed. The focus is always on the *hic-et-nunc* ecological pressures for adequate or successful communication.

Patterns, which linguists have identified as “rules” (integrated into systems), are therefore consequences of habits that the interactants have developed, based largely on analogies that obtained among items (Mufwene 2008), like when, in English, verbs of intention combine with verbal complements in the subjunctive or the infinitive but verbs of prohibition (such as *prevent* and *discourage*) combine with verbal complements in the gerund, sometimes preceded by the preposition *from*. Because there are cross-linguistic similarities across languages, though the patterns are not identical, it is evolutionarily interesting to understand why such variation is the case. 20 Thus, are there any particular cognitive pressures that impose on speakers only the typological options that have been attested in human languages but not others? Why would such a mood as the *subjunctive*, as opposed to the *indicative*, have emerged, even if it is not universal? Why didn’t some other kinds of strategies develop for complements of verbs of intention and prohibition?

20 Dor & Jablonka (2010: 140) actually comment on this in an interesting way: “as more and more elements came to be canalized, and the language came to assume a certain architectural logic, the logic gradually imposed system constraints on what the next viable innovation would be.” This underscores Wimsatt & Griesemer’s (2007) idea that current forms and/or structures provide the scaffold for innovations. From the point of view of the evolving system, they refer to this extension of the notion as “self-scaffolding.”
Would such constraints provide evidence for Charles Darwin’s hypothesis that mental evolution drove the evolution of language rather than the other way around? This kind of question has generally not been addressed, though it arises as an issue from Bickerton (1995ff). He could not address it, because he assumes that language emerged to enhance human capacity for thought; therefore the conceptual infrastructure could not possibly influence how language would evolve. Is there any hope that cognitive grammar, functional grammar, construction grammar, or any other approach to syntax that does not rely overly on what Lieberman 2006: 61 calls “theories of data” may help us address the question adequately? Or are the approaches that assume that language is primarily a means of communication misguided? In any case, emergence is antithetic to design. If the claim that language emerged out of hominins’ attempts to communicate at various stages of their evolution is correct, then it may be misguided to continue using Hockett’s (1959) “design features.”

Much of the current scholarship on the evolution of language has been more global, focusing on the correlation between the different stages of the evolution of the mental and anatomical structures of the *Homo* genus at various stages and the apparently gradual evolution of language, especially since *Homo habilis*. These include but are not limited to Bickerton (1990, 1995, 2007, 2010), Lieberman (1984, 2002, 2006, 2010), Corballis (2002, 2010), MacWhinney (2002), Fitch (2002, 2010), Tomasello (2008), Tomasello *et al.* (2005), McNeill (2005), McNeill *et al.* (2008), MacNeilage (2008), Mufwene (2009, 2010b), and Hombert & Lenclud (in press). All but Derek Bickerton argue for gradual, protracted evolution. Tomasello stresses the significance of ecological pressures exerted on hominins by their increasingly more complex social lives, which required management by means of efficient and explicit
communication. Modern language would provide this, driven by the same mind that was ready to handle the corresponding complex social interactions. He argues that collaboration and joint attention played as important a role in the emergence of language as in social organization. He shares with Sperber & Wilson (2002, see also Sperber & Origi 2010) the “theory of mind,” which enables interactants to second-guess each other and thus to infer the intended meaning. All these factors enabled the emergence of symbolic language, the characteristic that indeed led Deacon (1997) to identify mankind as the “symbolic species.” As noted above, symbolic communication is, according to the latter, the characteristic that clearly distinguishes human communication from animal communication. Sperber & Origi (2010: 131) conclude:

From a pragmatic perspective, it is quite clear that the language faculty and human languages, with their richness and flaws, are only adaptive in a species that is already capable of naïve psychology [i.e. mind-reading ability] and inferential communication.

Corballis, MacWhinney, and McNeill also argue that the earliest ancestors of human language could not have been vocal. Whereas Corballis and MacWhinney originally estimated that the embryonic forms of speech may have started as early as 500,000 years ago, Corballis (2010: 115-116, 119, 123) argues that only language, using gestures, may have started that early, with some complex grammar for that matter, and the contribution of *Homo sapiens* since about 100,000 years ago was the introduction of speech. This may not have evolved to its modern forms until about 30,000 years ago. To be sure, Corballis does not claim that the switch was abrupt or that no phonetic vocalizations occurred before *Homo sapiens*. What he means is that gestural communication was dominant and verbal communication did not prevail as the
dominant means of communication until *Homo sapiens*. It still took tens of thousands of years to evolve to modern phonetic norms:

[The] events are consistent with the possibility that autonomous speech emerged in Africa perhaps 100,000 years ago, or even more recently, after the emergence of *Homo sapiens* but before the migration from Africa and led to increasing sophistication in technology and manual crafts (Corballis 2010: 123).

Corballis’ new position is echoed by Lieberman (2010: 175):

McCarthy, Strait, Yates and Lieberman (forthcoming) found that the necks of the Middle Paleolithic fossils who lived about 100,000 years ago were too short to have a pharyngeal SVTv [vertical supralaryngeal vocal tract] that was equal in length to SVTh [horizontal SVT]. A similar constraint rules out Neanderthals having a human SVT. Surprisingly, neck lengths that would support a fully human SVT are not apparent in the fossil record until the Upper Paleolithic, some 50,000 years ago, when a blossoming of complex tools and art appears in the archeological record (...) the sudden appearance of an array of advanced artifacts has been taken to be a sign of cognitive advance. (...) The presence of a human SVT in a fossil hominin can be regarded as an index for the reiterative neural substrate that makes voluntary speech possible. And that neural substrate also plays a critical role in making syntax, cognitive flexibility, and, yes, dancing possible. Speech, language, and some degree of cognitive flexibility surely were present earlier, but the presence of a SVT specialized for speech at the cost of choking
places a date stamp on when brains like ours definitely existed [and presumably on when, or after which, modern languages did too] (175). 21

McNeill’s work certainly indicates that speech has not become the exclusive means of communication to date, as it is usually complemented or supplemented by gestures. Kegl et al. (1999, on Nicaraguan Sign Language), Goldin-Meadow (2003a, 2003b, on home sign language), and the rest of the literature on sign language suggest also that mankind could have evolved to become predominantly signers rather than speakers. 22 It appears to me that biology-style natural selection did drive the evolution of language conceived of as the cumulative manufacture of particular communicative technology under specific ecological pressures that favored speech as its medium. Givón (1998, 2002) cites advantages such as the ability to work and communicate at the same time and the ability to communicate in the dark or in spite of barriers to vision. MacNeilage (2008) and Allan (2010: 233) also invoke the broadcast capacity of speech, a factor that, according to Dunbar (1996), fostered the emergence of speech, as it enables the speaker to “groom” (interpreted here charitably in the sense of ‘socialize’) with several rather than with one other person at a time. 23 Broadcasting certainly widens the radius

21 Lieberman (2002) had argued that:

Speech production, complex syntax, and a large vocabulary developed in the course of hominid evolution, and Homo erectus most likely talked, had large vocabularies, and commanded fairly complex syntax. Full human speech capability, enhancing the robustness of vocal communication, most likely is a characteristic of anatomically modern humans (58).

All these changes of opinion underscore the stronger empirical foundations of today’s speculations on the emergence and evolution of language. New paleontological discoveries and a better understanding to modern humans’ neural circuitry will shed more light on the subject matter.

22 MacNeillage argues against this perspective, citing not only the assumption that the ability to vocalize started before Homo habilis but also “the greater organizational similarity between speech and birdsong than between speech and sign language” (309).

23 Bickerton (2010: 28) disputes this account, on the grounds that “it fails the ten-word test, what you might call the test of immediate utility.” To be sure, grooming falls in the category of ecological explanation; it provides
of message transmission! Corballis (2010: 122) and Mufwene (2010b: 305) invoke, in addition, the fact that speaking uses less energy, as it depends on compact articulators that move in a much smaller space and proceeds faster. To be sure, signing compensates for this in not being absolutely linear, though the signer’s hands probably cannot keep up with the speed of a normal speaker’s speech organs.

These considerations are nonetheless not the full story. Signing has its advantages too. As John W. Wenzel (p.c., 1/24/2009) pointed out to me, signing is useful when silence is required, such as during group hunting, or in situations where speaking would place the speaker in danger (such as before a carnivore predator), or when one is diving. It looks like our hominin ancestors would have weighed the pros and cons of speech vs signing as the primary technology for communication. All these dangerous situations are not part of humans’ default mode of existence, in safe environment and interacting in dyads or triads rather than in large groups. If Tomassello (2008) is right about the significance of social life as an ecological pressure on the emergence of language (see also Corballis 2010: 116), then interactions in situations of no danger must have favored the advantages that speech offers over signing, though we now know that one can express in signed language anything that can be expressed in spoken language. Interactions in situations of danger might explain why gestures have not been completely eliminated, especially if one factors in their greater tendency to be iconic compared to speech.

actuation for the emergence of language but says nothing about how the emergence occurred. It is undoubtedly one of the many social reasons and is not mutually exclusive with any particular account of how things proceeded, including Bickerton’s own account.
However, Fitch (2010: 442-445) articulates more explicitly some of the counter-arguments developed since Hewes (1996) about this evolution, highlighting more advantages of signing over speech. The auditory attention is freed while signing, and gestures can be more efficient while teaching a partner to make tools (aside from the fact that actions are more often learned by observation and imitation than from somebody else’s teaching verbally). Speech may be more energy-efficient, as it depends on articulators that are smaller than are involved in signing. However, as MacNeilage (2008) points out, the latter is not structured in exactly the same way. So, according to Fitch, there is still no convincing explanation yet for why speech has prevailed as the demographically dominant medium of human language.

It appears that the study of the evolution of language will be enriched by a better understanding of changing ecologies of the *Homo* genus, within and outside the species, during its protracted evolution. It will be informative to learn more about the role played by obvious major ecological factors such as its neural, mental, and anatomical structures, the evolving social structure, and all the pressures they exerted on the emergence and evolution of language. It is absolutely important to identify individuals as the most direct ecology that filters the external ecological pressures, because, the structures and vitality of languages are determined not by concerted behaviors of populations but rather by accumulations of individual behaviors, which occur without foresight of consequences but just happen to converge toward certain outcomes. 24 Each communicative act is determined by particular ecological pressures to which the communicator responds in the *hic et nunc* of the interaction.

24 This is a perspective that comes the closest to Dor & Jablonka’s (2010) invocation of the role of development in evolution. Though there is ample justification for invoking children as those who introduce modification through the process of language learning, which is imperfect relative to the overall population, adults too contribute to
Much of the recent scholarship has focused just on the emergence of speech, especially regarding the transition from ape-like holistic vocalizations to phonetic communication and the relation of this aspect of the evolution of language to that of the relevant neural circuitry and anatomical structure. This is probably also an area that is less abstract than syntax and semantics and easier to speculate on with more paleontological evidence. Space and time constraints force me to focus here on Philip Lieberman, Peter F. MacNeilage, and Alice Wray, though there are many others who deserve attention.

MacNeilage (2008) is perhaps the most extensive published discussion to date, which goes as far as questioning the empirical justification for the notion of UG and its relevance to accounting for the emergence of language. According to him, speech evolved in several steps, starting with the cooption for phonation of organs that had evolved for ingestion. The rhythmic pattern of the relevant organs was subsequently exapted for vocalization in CV syllables, which could be reduplicated like in child language; but reduplication was abandoned for “syllabic variegation and (the related) restrictions on VC co-occurrences” in the production of words, as “pressures on speech systems to expand the size of their message sets” increased (320). Eventually, longer utterances corresponding to sentences would evolve, but MacNeilage does not discuss this particular aspect of the evolution of language. However, he leaves “some latitude for different dialects and for individual differences” to have been part of the

changes of current structures as they respond to hic-et-nunc communicative pressures and extend uses of some current forms and/or structures accordingly (Mufwene 2001, 2008). This is more obvious in the grammaticization process discussed by Heine & Kuteva (e.g., 2007) to which I return below.

Another informative opponent to the notion is Lieberman (2006), according to whom “solid biological evidence rules out any version of innate Universal Grammer” (5). In addition, “the brain mechanisms that yield human syntax also have evolutionary antecedents outside the domain of language. (...) [they] continue to support neural circuits that regulate motor control as well as aspects of cognition, mood, and much else” (2006: 6).
emergence process. (He does not specifically tackle the monogenesis/polygenesis issue.)

Against the role that UG, he writes:

For language in particular, mirror neurons [which are attested in other primates too] provide the foundation for a more encompassing embodiment-based neuro-cognitive alternative to UG, one that goes beyond the mechanisms that lie between meaning and sound, considered separately, by including meaning and sound in the same picture, and giving us a better basis for the relationship.

The embodiment perspective was primarily in my attempt to say how the first words were made. I suggested that the phonetic structure of the first words resulted from the cognitive pairing of an observed action (...) with a concept (326).

To be sure, MacNeilage brings us closer to articulating Wray’s (2002) hypothesis that the Homo genus evolved from holistic vocalizations to phonetic communication. However, it is difficult to link both scholars here, largely because they do not start from the same working assumptions. MacNeilage does not subscribe to Bickerton’s protolanguage any more than to UG. A natural bridge between them is Carstairs-McCarthy (1999), who, not unlike Jean-Jacques Rousseau, argues that Wray-style vocalizations would have been articulated into syllables first and later into the segments that these consist of. This evolution would have resulted in phonetic communication, though, as noted in Part 2, it raises the question of whether vowels and consonants arose at the same time, whether “syllabic variegation” started in the way hypothesized by Rousseau and by MacNeilage (with CV syllables) or initially just with variation in the quality of vowels, which would raise the question of how long the initial polysyllabic words consisting only of vowels could be. In the relevant passage quoted in Part 2, Rousseau
suggests that the initial vocalizations consisted of vowels only and consonants were innovated to mark syllabic boundaries. The fact that in all languages around the world the vast majority of syllabic peaks consist of vowels makes these considerations an interesting question for students of the evolution of language to pursue.

An informative complement of the above discussion on speech comes from Fitch’s (2010) summary of the state of the art about the evolution and functions of what linguists call “speech organs” (section 8.3), which, based on the foregoing, are but exaptations of anatomical structure that evolved primarily for breathing and ingestion of food and liquids. Their use for speech is a perfect illustration of exaptation as defined by Gould & Vrba (1982):

A character, previously shaped by natural selection for a particular function (an adaptation), is coopted for a new use—cooptation. (2) A character whose origin cannot be ascribed to the direct action of natural selection (a nonadaptation), is coopted for a current use—cooptation. (Gould & Vrba, copied from Wikipedia, 1 March 2011).

Fitch starts by noting that “[m]any animals open and close their jaw in the course of a call (...) and changes in lip position are almost as common” (311). The role of the descent of the larynx in the emergence of speech has been exaggerated, especially also in the interpretation of the feature as uniquely human. It is attested in other animals too, though in many of them the descent is not permanent. Its role in non-humans is to exaggerate size, and humans too exploit this feature. “[I]t is really the descent of the tongue root (...) that is the critical factor in speech production, rather than the descent of the larynx per se” (312). He agrees with Lieberman et al. (1972) that “hominids must have had some form of speech [intended as ‘language’] before the descent of the larynx” (313), which does not mean that they had modern language.
Based on Lieberman (2006, 2010, discussed above), one must ask when (i.e., at what stage of hominin evolution) the larynx descended. According to Lieberman (1984, 2006), this otherwise maladaptive phenomenon (which puts humans at the risk of choking while ingesting) was probably a consequence of the reconfiguration of the basicranial structure after the hominins became bipedal. This says nothing about the phylogenetic time of the emergence of the feature. However, it is informative to know more specifically, that the descent of the larynx was a consequence of the descent of the tongue down the pharynx, pushing the larynx down, as happens now in human infants (Lieberman 2007: 46). This anatomical feature must have been selected because of the advantages that it conferred towards the further evolution of speech into its modern form. So, Fitch concludes:

Not only does the descent of the larynx enlarge our phonetic repertoire, but it does so in a way that enhances speech encoding and decoding (…) and it give[s] us the point vowels /i/, /a/, /u/ that are found in all human languages, particularly the “supervowel” /i/, which plays a central role in the vocal tract normalization (315). (…) there must be functions of a descended larynx other than increased phonetic versatility (…) leaving size exaggeration as the most plausible explanation (321; Fitch’s italics).

(…) the primary evolutionary changes required for [modern] spoken language were neural, not changes in vocal anatomy” (362).

This confirms again Darwin’s (1871) position that the mind drove the emergence and evolution of human language, as it enabled hominins at successive stages of their phylogeny (mental and physical) to coopt parts of their anatomy to develop various stages of the language
technology. In other words, by the increasing power of their minds, hominins and humans gradually domesticated their anatomies to produce the communicative technologies called languages. I submit again that the mind is really the most important feature that distinguishes mankind from other primates, and certainly other animals, although it does not function identically in all individuals, not any more than their physiologies are identical. Language is after all a collective gradual invention (by emergence).

The implications of this position are worth exploring further, since no two speakers have identical competences in any language they speak and/or sign. This interpretation is consistent with the notion of *idiolect*, whose features, as noted above, are determined as much by the variation in the interaction histories of speakers/signers (Mufwene 2008: 120, 126) as by their individual learning capacities as determined by their mental and anatomical singularities (Dor & Jablonka 2010: 139).

It should be obvious by now that students of the evolution of language do not share identical working assumptions. Nor have they focused on the same research questions. Some have been more interested in the particular interactive dynamics that made it possible for language as a communal phenomenon to emerge. This is especially the case for Croft (2000, 2002, 2008), Tomasello (2008), Tomasello *et al.* (2005), and Mufwene (2001, 2003). Croft and Mufwene have patterned their approaches on biological evolution. Assuming an emergentist construction grammar, Croft has assumed that utterances are replicators, which vary across individuals and are in *competition*, which is explained by Mufwene (2008) as a situation in which the variants are not equally rated by users. The competition is resolved by *selection*, which can
be interpreted as in biology, when a variant prevails over another or others, for any number of reasons in the relevant ecology.

Mufwene has gone as far as to argue that individual languages are the counterparts of viral species, with their organisms being the idiolects of particular speakers/signers. He posits a FEATURE POOL in which the variants produced by different speakers/signers are in competition and the machine that runs selection lies in the ecologies in which languages are used. The challenge is to define ECOLOGY, which has usually been understood as the social environment, with all the pressures emanating from population structure. I now think that, regarding the evolution of language, the ecology that matters the most lies in the different evolutionary stages of the mental and anatomical structures of the *Homo* genus. They determine what forms the relevant means of communication could assume.

Where both Croft and Mufwene hope to inspire those focusing on strictly phylogenetic topics and issues is especially the way they invoke INNOVATORS and SPREADERS/COPIERS (concepts also used by Tomasello 2008 and Tomasello et al 2005) to account for the emergence of new linguistic features, which can, for convenience sake, be explained roughly here as applying to forms and constructions. As different innovators need not introduce the same features (Croft calls them “linguemes”), competition arises and various ecological factors determine which variants will prevail for which specific functions, there being room for free variation too. Selection is not made consciously but is the cumulative outcome of choices made at different times by speakers/signers in their utterances. Since most interactions are dyadic or triadic and since speakers do not normally hold meetings to state which particular variants they prefer, the question arises of how norms emerge. Both linguists have at times invoked the “invisible hand”
but have been invoking “self-organization” in their recent works, after familiarizing themselves with complexity theory.

EXAPTATION has been a recurrent concept in the literature, underscoring the (self-)scaffolding aspect of language evolution. This has been implicit in many of the discussions above, but the term has increased in currency especially regarding the emergence of speech. (See Oudeyer 2006 for an extensive discussion.) It is also applicable to the emergence of grammar, especially in the process called grammaticization or grammaticalization, whereby some verbs or nouns are exapted to be used as function words, such as complementizers or prepositions. Regarding the emergence of grammar itself, the boldest attempt is to be found in Heine & Kuteva (2007), who, in the footsteps of Johann Gottfried Herder and Friederick Max Müller, claim that the initial language consisted just of nouns and verbs; all the other categories are derivatives from these. They do not explain how, among other aspects of grammar, predication and different strategies for specifying reference and time evolved, and under what particular ecological pressures, though they explain, based on synchronic linguistic evidence, how particular markers may have acquired grammatical meanings.

I will conclude this selective survey of topics addressed in the past two decades on the evolution of language with a brief discussion of the emergence of linguistic diversity. It is particularly significant because universals and typological variation have been central in linguistics since Joseph Harold Greenberg’s (1966) landmark publication on the subject matter. Even the generative linguists’ preoccupation with principles and parameters as they are constrained by UG is a consequence of the pioneering work of Greenberg, though UG is not synonymous with language universals. The question is critical especially because most of the
literature has assumed or suggested monogenesis; it has typically not mentioned variation in
the protolanguage or the earliest ancestor of modern language. As a matter of fact, as noted
above, Swadesh (2006) assumed that because the original ancestor of modern language was
instinctive, there could not be significant variation in it. Let’s thus focus on when speech started
to emerge. Here is what Jim Hurford, one of the veteran students of the evolution of language,
has to tell us:

Summarizing the factors contributing to linguistic diversity, (1) the fact that languages
are learned, rather than coded into the genes, (2) the arbitrariness of the sign, and (3)
the prevalence of horizontal transmission allow for great diversity, but this is
significantly constrained by (4) biological factors such as memory and processing
limitations, which may or may not be specific to the Language domain (Hurford 2008:
251).

These factors account more for idiolectal variation, as there is no faithful replication in
language learning (Lass 1997), than for the emergence of typological variation across languages.
If populations can choose to build their languages on different words and on only-overlapping
phonetic inventories, what should keep them from developing different combination patterns
of these units into larger utterances and therefore different grammars? If we interpret
phonology as the grammar of sounds and assume that grammars are consequences of the ways
units are combined together and structured into larger and larger (hierarchical) units, why
should we expect the relevant hominin/human populations at the different stages of the evolution of language to have done exactly the same thing?26

After all, the paleontological evidence does not suggest that *Homo sapiens sapiens* dispersed to the world out of one village in Africa and hominin fossils appear to have been found in a vast area of East (and South) Africa. Shouldn’t it be normal to assume that, having reached the same stage of mental and anatomical evolution, hominin populations developed languages that were comparable but not identical in their architectures? They did not have to package information in identical ways, no more than they developed identical cultures.

Another dimension of the scholarship on the evolution of language today lies in computer modeling, which I will not discuss here, due to lack of space. The rewards depend largely on the assumptions that underlie the models. When they are empirically grounded, they become important research tools, such as when used by Philip Lieberman and his associates to determine whether the Neanderthal was capable of speaking. When informed accurately and well designed, modeling can help empirical research reformulate some of its questions about a distant past that cannot be recreated. (See, for instance, Oudeyer 2006 about self-organization in the emergence of language and Steels 2011 about the emergence of communal norms.)

Last but not least, there is all the research on animal communication, especially intra-specifically among non-human primates and between humans and some great apes. It is expected to inform research on the evolution of language insofar as scholars can identify both behaviors that may have been inherited from our common ancestors millions of years ago and

26 A convenient non-linguistic illustration of this may be found in how engineers using similar algorithms constrained by the same principles produce technologies (such as computers and derivative products) that are not identical in their architectures and functionalities.
later homologous evolutions from features shared earlier in our common phylogenetic ancestry. Unfortunately, I can do even less justice to this topic here than to those discussed above. Comparisons by Tomasello (2008) regarding joint attention and cooperation highlight the significant role which these social factors that we do not share with the other primates played in the phylogenetic emergence of human language. Fitch’s and Lieberman’s comparisons regarding their supralaryngeal vocal structures also reveal important differences that rule out the possibility that they would have developed human-like speech even if they were endowed with the same kind of mind as we are. On the other hand, discoveries that nonhuman primates share with us mirror neurons, the FOXP2 gene, and some of the specialized functions associated with the Broca’s area suggest that the human mind had a greater role to play in the emergence of language than may have been assumed before, which is precisely why our phylogenetic cousins have not even developed some symbolic-iconic system similar to sign language. Language may be a more cultural phenomenon than some of us have assumed. I submit that language is indeed one of the facets of human culture and both linguists and anthropologists may have been misguided in speaking of language and/in culture as if they were opposed to each other on the same plane.

On the other hand, there is also growing literature suggesting that differences between animals and humans are more a matter of degrees than dichotomous. Some of the capacities having to do with mirror neurons and mind-reading are very similar, which raises the question of whether human intelligence is not a consequence of the particular ways various parts of the brains and modules of the mind interact. It’s long been assumed that animal means of
communication are innate but humans’ are not. (UG, at least for those who subscribe to some useful interpretation of this notion, may be innate, but it is not language itself!).

However, it has also become evident that a certain amount of learning is involved in, for instance, bird songs (Margoliash 2010). Past the critical period, the bird does not develop the right song for its conspecifics! Besides, some birds exposed to alter-specifics’ songs acquire it rather than that of their conspecifics. This and other factors raise the question of whether there is such a thing as language or cultural “transmission,” analogous, to gene transmission in biology, especially among humans. Unlike transmission, which, in the absence of mutations, guarantees faithful maintenance of inherited traits, learning by inference almost insures modification of the target features, which is more consistent with language “acquisition,” interpreted as system-reconstruction (Mufwene 2001, 2008). Students of cultural evolution, such as Richerson & Boyd (2005), Mithen (2005), and Mesoudi, Whiten & Laland (2004) have kept up impressively with the scholarship on language evolution. We have everything to learn in reading them too.

Some of the more popular studies of animal communication have focused on what can be learned from teaching human language or an artificial system made by humans to primates (e.g., Segerdahl et al. 2005). It appears that lexigrams are a seriously impoverished system that does not go beyond the telegraphic stage in child language. Although great apes such as Kanzi have been credited with the ability to understand human speech, it is not obvious that they can follow a narrative the way a human child can. This highlights mental differences between nonhuman primates and us, though differences in mental capacities are also a matter of degrees. Nonetheless, it appears that the less than 2% genetic differences between
chimpanzees and humans have entailed exponential cultural, and more specifically language-related differences.

The overall approach has assumed that humans are more evolved than non-human primates, rather than just being different from them. We have not yet accounted for why we cannot learn to communicate the way they do! Answers to this question may equally well inform us about how different our minds really are from theirs or, more accurately, about how communication in all species is jointly constrained by their respective mental and anatomical ecologies. We have discussed culture as if it were peculiar to humans, whereas it can be interpreted as customary ways in which members of a particular population behave and do things. Cultural differences can also inform us about how different social structures have influenced what needs to be communicated and what kinds of systems are needed to convey the relevant pieces of information.

4. Conclusions: Older vs current approaches to the evolution of language

As aptly expressed by Fitch (2010: 389),

[regarding language evolution, there are very few new hypotheses under the sun, and current debates can and should pick up where our scholarly predecessors left off. (…)]

there are real insights in the older literature which remain unappreciated.

As also noted by Hombert & Lenclud (in press), a number of the positions assumed today were already defended by philosophers of the 18th century. For instance, the claim that language is what distinguishes mankind the most clearly from the animal kingdom is not new. It is already evident in Condillac. It’s also hard to distinguish 18th-century arguments for the emergence of
human language out of instinctive cries and gestures from Bickerton’s position that the predecessor of his “protolanguage” consisted of holistic vocalizations and gestures. The idea of gradualism in the evolution of language is not new either; and Rousseau had already articulated the significance of social interactions as a prerequisite to the emergence of language. And one can keep on identifying a number of current hypotheses which are hardly different from earlier speculations on the subject matter.

An important difference between us and those philosophers and philologists before the 19th century, and in some cases up to then, is that we no longer assume that our hominin ancestors of 200,000-100,000 years ago and others long before them were just like us, except that they were either created by God or just happened to inhabit our planet long before we did, or just were less intelligent or rational than we are. We now approach the subject matter taking into account what communicative architecture would have been possible at various stages of hominin evolution. In other words, since *Homo habilis* was anatomically different from *Homo erectus*, what kind of language would those remote ancestors of ours have been capable of developing even if they were equipped with the same kind of mental capacity as *Homo sapiens sapiens*. The same applies to *Homo erectus* and archaic *Homo sapiens*. A similar question arises regarding the complexity of utterances relative to the complexity of the hominin mind and/or social organization. What kinds of ecological pressures did they exercise on the evolution of language? Lieberman (1984ff), Bickerton (1990ff), Tomasello (2008), Corballis (2002, 2010),
MacNeilage (2008), and Fitch (2010) are good illustrations of this ecological approach, if I may so characterize it with my own bias, although they do not draw identical conclusions.\footnote{As a matter of fact, Bickerton (2010) now discusses the evolution of language from the point of view of “niche construction,” which Laland (2007:35) characterizes as “the process whereby organisms, through their metabolism, their activities, and their choices, modify [their] niches.” (See also Odling-Smee et al. 2003 for a more elaborate discussion.) The subtitle of Bickerton (2010) captures the idea adequately: “How humans made language, how language made humans.” This is better understood if the evolution of language is viewed as the consequence not only of biological evolution but also of cultural evolution. Much of human social life is also influenced by language practice.}

Another important difference between us and philosophers and philologists before the 19th century is that, better than Socrates in Plato’s \textit{Cratylus}, we are more aware of the speculative nature of our hypotheses, perhaps better described as conjectures, in this research area. With few exceptions, scholars have generally been more critical and more cautious, revealing more awareness of the limitations of the state of the art.

Whether or not we acknowledge it, Charles Darwin has also exercised a long-lasting impact on us: most scholars today do not assume that language was God-given, presuming creationists are in the minority. Even Chomsky’s account that UG emerged by some rewiring of the brain is a Darwinian explanation, because Darwin made allowance for mutations, and UG could have emerged only at a particular stage of hominin evolution, quite late. Besides, mutations are probably also the best explanations from all the changes in hominin evolution, with the mutants prevailing and the rest evolving as consequences of those mutations.

We also now think of the architecture of languages as modular. This is an idea that does not appear in the earlier literature. It also frees scholars from having to assume that every component of modern language must have evolved at the same time as the others. Nor do we have to assume that the anatomical and mental structures that were coopted in the apparently
gradual emergence of language all evolved at the same time. Even in assuming that the mind
domesticated hominin and human anatomy for the production of language, it need not have
coopted the different organs concurrently. This is the kind of evolution suggested the
paleontological evidence that experts have adduced, leading both Michael Corballis and Philip
Lieberman to now conclude that speech-dominated communication must have emerged more
recently, 50,000-30,000 years ago, not 500,000 years ago. This thinking is consistent with
Hombert & Lenclud’s (in press) conclusion that the capacity for language is a derivative and
consequence of hominins’/humans’ evolving cognitive capacity.

It is more and more evident that the subject matter of the evolution of language is
multifaceted, having to do with the mechanical/architectural aspects of language, with the
particular anatomical organs coopted for its production and perception, with the mental
aspects of the technology (including the formation of concepts and their combinations into
larger chunks), and with the apparently social motivation for producing the technology. It
would be difficult, if not impossible, to explain how modern humans’ linguistic communication
got where it is now without answering various questions that pertain to these different facets
of the subject matter. It is part of understanding how the *Homo* genus has evolved over the
past 3-2 million years biologically, anatomically, mentally, and socially.

References

physiology* (New York : Cambridge University Press).

Bickerton, Derek (1984b), The language bioprogram hypothesis and second language acquisition, in W. E. Rutherford (ed.), *Language universals and second language acquisition* (Amsterdam: Benjamins), 141-161..

In Larson et al. (eds.), 45-62.

Corballis, Michael C. (2010), ‘Did language evolve before speech?’, in Larson et al. (eds), 115-123.

Croft, William (2003), ‘Social evolution and language change’ Ms.

DeGraff, Michel (2005), ‘Linguists’ most dangerous myth: The fallacy of creole exceptionalism’.

Language in Society 34, 533-591.
Dor, Daniel & Jablonka, Eva (2010), ‘Plasticity and canalization in the evolution of linguistic communication: An evolutionary developmental approach’, in Larson et al. (eds), 135-147.

Freeman, Edward Augustus (1881), The historical geography of Europe. Vol. 1. (London: Longmans, Green, & Co.)

Hauser, Mark; Chomsky, Noam; & Fitch, W. Tecumseh (2007), ‘The language faculty, what it is, who has it, and how did it evolve?’, *Science* 298, 1569-1579. Reprinted in Larson et al. (eds), 14-42.

Herder, Johann Gottlieb (1771), *Über den ursprung der Sprache*, (Von der Akademie der Wissenschaften zu Berlin), (Trans. and publ. in Moran & Gode 1966).

Lieberman, Philip (2010), ‘The creative capacity of language, in what manner is it unique, and who had it? In Larson et al. (eds), 163-175

Maine, Henry Sumner (1875), *Effects of observation of India on modern European thought*, The Rede lecture, delivered before the University of Cambridge, 22 May (London: John Murray).

Maupertuis, Pierre Louis Moreau de. (1848) *Réflexions philosophiques sur l’orgine des langues et la signification des mots* (No place of publication.)

McCarthy, Robert C.; Strait, David S.; Yates, Frederich; & Lieberman, Philip (forthcoming), *The recent origin of human speech*.

McNeill, David; Duncan, Susan; Cole, Jonathan; Gallagher, Shaun; and Bertenthal, Bennett (2008), ‘Either or both: growth points from the very beginning’, in Michael Arbid and
Derek Bickerton (eds.) *Holophrasis vs Compositionality in the Emergence of Protolanguage* (Amsterdam: Benjamins) 117-132.

Müller, Friedrich Max (1873), ‘Lectures of Mr. Darwin’s philosophy of language’, *Fraser’s Magazine*, vols. 7 & 8, reprinted in Harris & Pyle (eds.), 147-233.

Paul, Herman (1880), *Prinzipien der Sprachgeschichte* (Halle: Niemeyer).

Tomasello, Michael; Carpenter, Malinda; Call, Joseph; Behne, Tanya; & Moll, Henrike (2005), ‘Understanding and sharing intentions: the origins of cultural cognition’, *Behavioral and Brain Sciences*, 28: 675-735.

